期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:秦松岩,吕务娟,黄馨,胡杰,罗义,赵立新.BioMnOx对非甾体药物氧化协同Fe(III)吸附的研究[J].哈尔滨工业大学学报,2021,53(5):16.DOI:10.11918/201910014
QIN Songyan,Lü Wujuan,HUANG Xin,HU Jie,LUO Yi,ZHAO Lixin.Mechanism of degradation of non-steroidal drugs and Fe(III) adsorption by BioMnOx[J].Journal of Harbin Institute of Technology,2021,53(5):16.DOI:10.11918/201910014
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 886次   下载 1038 本文二维码信息
码上扫一扫!
分享到: 微信 更多
BioMnOx对非甾体药物氧化协同Fe(III)吸附的研究
秦松岩1,吕务娟1,黄馨1,胡杰1,罗义2,赵立新1
(1.天津理工大学 环境科学与安全工程学院,天津 300384;2.南京大学 环境学院,污染控制与资源化研究国家重点实验室,南京 210093)
摘要:
恶臭假单胞球菌(Pseudomonas Putida)可氧化Mn2+生成生物锰氧化物,生物锰氧化物的形成过程及其吸附氧化活性对水体中有机/重金属复合污染的控制具有重要意义.为此,通过研究生物锰氧化物对APAP(乙酰氨基酚,acetaminophen)氧化以及Fe(III)吸附探讨其吸附氧化活性的相互影响.结果表明,BioMnOx为无定型的纳米颗粒,在形成过程中自身结构发生变化,表面由平整变为密集、突出的颗粒状,颗粒边界更为清晰,颗粒粒径从约49.9 nm长至约70 nm.BioMnOx在形成过程中对Fe(III)的吸附发生在对APAP的氧化之前,对Fe(III)的吸附并未对APAP的氧化速率产生影响.APAP氧化降解过程和Mn2+氧化速率过程均符合一级动力学方程.BioMnOx的氧化活性对APAP降解造成一定的影响.Mn2+质量浓度增大,可减少APAP的降解时间.GC-MS结果显示,APAP的降解途径为先被氧化为乙酰胺及对苯二酚、对氨基苯酚等苯酚类物质,继而转化为乙二酸、苯醌等更加简单的物质后最终矿化.
关键词:  乙酰氨基酚  生物锰氧化物  Fe(III)吸附  动力学  降解途径
DOI:10.11918/201910014
分类号:X703
文献标识码:A
基金项目:河北省重点研发计划(20373604D)
Mechanism of degradation of non-steroidal drugs and Fe(III) adsorption by BioMnOx
QIN Songyan1,Lü Wujuan1,HUANG Xin1,HU Jie1,LUO Yi2,ZHAO Lixin1
(1.School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; 2.State Kay Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China)
Abstract:
Pseudomonas putida can oxidize Mn2+ to produce biological manganese oxide. The formation process and the adsorption oxidation activity of biogenic manganese oxide are crucial to the control of organic/heavy metal combined pollution in water. In this paper, the interaction between acetaminophen (APAP) oxidation and Fe(III) adsorption by biological manganese oxides was studied. Results show that BioMnOx were amorphous nanoparticles. During its aging process, its structure evolved, and the surface appearance changed from flat to dense and protruding granule. The boundary of the particles became clearer. The average particle size ranged from about 49.9 nm to 70 nm. The adsorption of Fe(III) by BioMnOx during the formation process occurred before the oxidation of APAP, and the adsorption of Fe(III) did not affect the oxidation rate of APAP. The oxidation degradation of APAP and the oxidation rate of Mn2+ all fitted well with the first-order kinetic equation. The oxidative activity of BioMnOx had certain effect on the degradation of APAP. The increased concentration of Mn2+ reduced the degradation time of APAP. GC-MC results show that the degradation pathway of APAP was that it was firstly oxidized to acetamide and phenolic substances such as hydroquinone and p-aminophenol, then converted into simpler substances such as oxalic acid and benzoquinone, and finally mineralized.
Key words:  acetaminophen  biological manganese oxide  Fe(III) adsorption  kinetics  degradation pathway

友情链接LINKS