期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:郑茂辉,刘少非.GA优化ELM神经网络的排水管道缺陷诊断[J].哈尔滨工业大学学报,2021,53(5):59.DOI:10.11918/201908056
ZHENG Maohui,LIU Shaofei.Defect diagnosis of urban drainage pipelines based on GA optimized ELM neural network[J].Journal of Harbin Institute of Technology,2021,53(5):59.DOI:10.11918/201908056
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1502次   下载 1379 本文二维码信息
码上扫一扫!
分享到: 微信 更多
GA优化ELM神经网络的排水管道缺陷诊断
郑茂辉1,刘少非1,2
(1.同济大学 上海防灾救灾研究所,上海 200092; 2.同济大学 土木工程学院,上海 200092)
摘要:
为及时发现排水管道安全隐患,准确掌握管道状况,结合极限学习机(extreme learning machine,ELM)神经网络和管道闭路电视(closed circuit television,CCTV)检测,建立一个数据驱动的排水管道缺陷诊断模型.采用遗传算法(genetic algorithm,GA)优化ELM神经网络的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的ELM模型输出不稳定、分类精度偏低的问题.以上海市洋山保税港区排水管道破裂、渗漏等主要结构性缺陷的诊断为例,对GA-ELM模型进行仿真分析,并与ELM模型诊断结果进行对比.结果表明,GA-ELM模型能够更好地识别管道缺陷,获得更佳的分类性能,参数优化提高ELM模型的拟合能力和泛化能力,可应用于城市排水管道状况评价,为排水管网养护计划和修复计划的制订提供技术依据.
关键词:  排水管道  缺陷诊断  极限学习机  遗传算法  神经网络  CCTV检测
DOI:10.11918/201908056
分类号:TU992
文献标识码:A
基金项目:国家重点研发计划项目(2016YFC0,7YFC0803300)
Defect diagnosis of urban drainage pipelines based on GA optimized ELM neural network
ZHENG Maohui1,LIU Shaofei1,2
(1.Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, China; 2.College of Civil Engineering, Tongji University, Shanghai 200092, China)
Abstract:
To detect the potential risks of drainage pipelines and accurately grasp the pipeline conditions, a data-driven defect diagnosis model was established by combining optimized extreme learning machine (ELM) neural network and closed circuit television (CCTV) inspection. Genetic algorithm (GA) was adopted to optimize the input weight matrix and the hidden layer offset of ELM neural network, which helps to solve the problems of unstable output and low classification accuracy of ELM neural network caused by random generation of network parameters. Taking the drainage pipeline dataset from Yangshan Free Trade Port Area in Shanghai as an example, the proposed GA-ELM model was conducted to identify and diagnose major structural defects, such as pipe rupture, disconnect, and leakage. The results of the GA-ELM model were compared with those of ELM model on the same dataset. It shows that the GA-ELM model achieved better classification performance by utilizing same neuron nodes in the hidden layer, and the optimization of parameters improved the fitting capability and generalization ability of the ELM model. Therefore, the proposed method is applicable to defect diagnosis and evaluation of urban drainage pipes and can provide a technical basis for the formulation of drainage network maintenance plan and repair plan.
Key words:  drainage pipeline  defect diagnosis  extreme learning machine (ELM)  genetic algorithm (GA)  neural network  CCTV inspection

友情链接LINKS