期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:谢鸥,宋爱国,苗静,孙兆光,沈晔湖.仿生机器鱼近壁面流场识别的人工侧线方法[J].哈尔滨工业大学学报,2021,53(9):164.DOI:10.11918/202010083
XIE Ou,SONG Aiguo,MIAO Jing,SUN Zhaoguang,SHEN Yehu.Near wall flow recognition method for bionic robot fish based on artificial lateral line[J].Journal of Harbin Institute of Technology,2021,53(9):164.DOI:10.11918/202010083
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1426次   下载 797 本文二维码信息
码上扫一扫!
分享到: 微信 更多
仿生机器鱼近壁面流场识别的人工侧线方法
谢鸥1,2,宋爱国1,苗静2,孙兆光2,沈晔湖2
(1.东南大学 仪器科学与工程学院,南京 210096;2.苏州科技大学 机械工程学院, 江苏 苏州 215009)
摘要:
针对仿生机器鱼目标近距离作业时的环境识别难题,提出一种基于人工侧线(ALL)的近壁面流场识别方法。理论分析了ALL感知近壁面流场环境的可行性,建立了ALL虚拟压力传感器阵列并采用计算流体动力学(CFD)方法计算并提取了不同参数条件下(来流速度v,靠壁距离d和游动频率f)仿生机器鱼的体表压力数据,建立了基于多层前馈神经网络的来流速度和靠壁距离预测回归模型,并对模型结构和数据特征进行了优化。结果表明:壁面效应将引起鱼体周围流场结构的非对称分布,鱼体头部和尾部的侧线传感器对流场参数的辨识度高,消除弱相关的特征对来流速度和靠壁距离预测指标的影响小且有利于降低预测模型的复杂度。研究结果能够为水下机器人环境识别的信息提取及处理提供理论方法。
关键词:  仿生机器鱼  人工侧线  神经网络  壁面  流场识别
DOI:10.11918/202010083
分类号:TP242
文献标识码:A
基金项目:国家自然科学基金(51975394); 苏州市科技计划项目(SNG2017054); 江苏省高等学校自然科学研究项目(18KJB510043)
Near wall flow recognition method for bionic robot fish based on artificial lateral line
XIE Ou1,2,SONG Aiguo1,MIAO Jing2,SUN Zhaoguang2,SHEN Yehu2
(1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China; 2. School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China)
Abstract:
In view of the environment recognition problems for bionic robot fish working near the target, a near wall flow recognition method based on artificial lateral line (ALL) is proposed in this paper. Firstly, the feasibility of near wall flow field environment recognition by means of ALL was analyzed theoretically. Then, the ALL virtual pressure sensor array was established. The surface pressure data of bionic robot fish were calculated and extracted under different parameters (inflow velocity v, near wall distance d, and swimming frequency f) by using computational fluid dynamics (CFD) method. Finally, the regression model of inflow velocity and near wall distance based on multilayer feed forward neural network was established, and the model structure and data characteristics were optimized. Results show that the wall effect caused asymmetric distribution flow around the fish. The lateral sensors at the head and tail of the fish had high identification for flow field parameters. Eliminating the weak correlation features had little effect on the prediction indexes of inflow velocity and near wall distance, and was helpful to reduce the complexity of the prediction model. The results can provide theoretical and methodological basis for information extraction and processing of underwater robot environment recognition.
Key words:  bionic robot fish  artificial lateral line  neural network  wall  flow recognition

友情链接LINKS