期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:李娜,侯本伟,杜修力,钟紫蓝,韩俊艳.基于主动学习Kriging模型的地下管线抗震可靠度分析[J].哈尔滨工业大学学报,2021,53(10):112.DOI:10.11918/202011023
LI Na,HOU Benwei,DU Xiuli,ZHONG Zilan,HAN Junyan.Seismic reliability analysis of buried segmented pipelines based on active learning Kriging model[J].Journal of Harbin Institute of Technology,2021,53(10):112.DOI:10.11918/202011023
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 940次   下载 1238 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于主动学习Kriging模型的地下管线抗震可靠度分析
李娜,侯本伟,杜修力,钟紫蓝,韩俊艳
(城市与工程安全减灾教育部重点实验室(北京工业大学),北京 100124) [HJ1.5mm]
摘要:
为提升地下承插式接口铸铁管线抗震可靠度的计算效率,提出基于主动学习Kriging代理模型的Monte Carlo模拟方法(AK-MCS)进行地下管线抗震可靠度计算。采用梁单元模拟管线结构,均布弹簧反映管土相互作用,接口弹簧模拟邻接管道约束作用,建立了地下管线地震响应分析模型;考虑管线接口允许位移、管线埋深、土体容重和内摩擦角等模型参数随机性的影响,以管线接口位移量为安全准则,采用主动学习Kriging模型方法建立管线接口位移响应与随机变量参数关系的代理模型,从而获得管线接口安全状态。算例结果表明,AK-MCS法计算得到的管线失效概率与传统Monte Carlo模拟计算的结果相对误差在5%以内,且AK-MCS法计算时间约为传统Monte Carlo模拟计算时间的2%。因此在进行管线可靠度计算时,主动学习Kriging代理模型方法具有准确性与高效性。
关键词:  地下管线  抗震可靠度  Monte Carlo模拟  Kriging模型  代理模型
DOI:10.11918/202011023
分类号:TU990.3
文献标识码:A
基金项目:国家自然科学基金面上项目(51978023);北京市教委科技计划一般项目(KM201910005022)
Seismic reliability analysis of buried segmented pipelines based on active learning Kriging model
LI Na,HOU Benwei,DU Xiuli,ZHONG Zilan,HAN Junyan
(Key Lab of Urban Security and Disaster Engineering (Beijing University of Technology), Ministry of Education, Beijing 100124, China)
Abstract:
In order to improve the calculation efficiency for seismic reliability of cast iron pipelines with bell-and-spigot joints, a Monte Carlo simulation method based on active learning Kriging model (AK-MCS) was proposed to calculate the seismic reliability of buried pipelines. A seismic response analysis model for buried pipeline system was established, in which the beam element was adopted to simulate the pipeline structure, and soil spring and joint spring were used to simulate the pipe-soil interaction and the constraint of adjacent pipe segments respectively. Considering the randomness of critical parameters such as the allowable displacement of pipeline joints, the depth of the pipeline, the unit weight, and the friction angle of the surrounding soil, based on the safety criteria of the allowable relative joint displacement, the active learning Kriging method was used to establish a surrogate model between the relative displacement of the pipeline joint and the random parameters. The safety margin of the pipeline joint was subsequently obtained through the validated surrogate model. Numerical results show that the relative difference of the pipeline failure probability between AK-MCS method and standard MCS method was less than 5%, and the computational time of the AK-MCS method was only about 2% of the standard MCS method. Therefore, the proposed AK-MCS method is an efficient alternative to evaluate the seismic reliability of buried pipelines.
Key words:  buried pipeline  seismic reliability  Monte Carlo simulation  Kriging model  surrogate model

友情链接LINKS