期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:米博,项彦勇.含黏粒砂土地层浅埋盾构隧道开挖渗流稳定性试验[J].哈尔滨工业大学学报,2021,53(11):59.DOI:10.11918/202002045
MI Bo,XIANG Yanyong.Experimental study on excavation-seepage stability for shallow shield tunnel in sandy ground with clay[J].Journal of Harbin Institute of Technology,2021,53(11):59.DOI:10.11918/202002045
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1048次   下载 904 本文二维码信息
码上扫一扫!
分享到: 微信 更多
含黏粒砂土地层浅埋盾构隧道开挖渗流稳定性试验
米博1,2,项彦勇1,2
(1.城市地下工程教育部重点实验室(北京交通大学),北京 100044;2.北京交通大学 土木建筑工程学院,北京 100044)
摘要:
针对含黏粒砂土地层浅埋盾构隧道开挖渗流稳定性问题,设计制作了主要由模型箱、水循环系统、盾构隧道与开挖面模型、饱和地层模型和量测系统组成的试验装置。通过模型试验,量测开挖面逐渐失稳过程中的地层沉降和开挖面饱和土压力以及前方地层孔隙水压力。结果表明:渗流条件下,开挖面前方地层孔隙水压力,会因地层黏-砂比的增大而增大,且会随开挖面体积损失的增大而增大;渗流会使开挖面极限有效土压力明显增大,开挖面极限有效土压力与地层黏-砂比基本上呈线性增加关系;地层极限失稳范围主要取决于开挖面前方和后方以及横向的破裂角,其中,后方破裂角受地层黏土含量和渗流的影响不大;无渗流时,地层极限失稳范围会因黏-砂比的增大而增大,而有渗流时,地层极限失稳范围会因黏-砂比的增大而减小。研究成果改进了对含黏粒砂土地层浅埋盾构隧道开挖渗流稳定性的认识,可以为实际工程以及有关的稳定性极限分析提供参考。
关键词:  含黏粒砂土地层  浅埋盾构隧道  黏-砂比  渗流  失稳模式
DOI:10.11918/202002045
分类号:U456
文献标识码:A
基金项目:中央高校基本科研业务费专项资金(2017YJS148); 国家重点基础研究发展计划项目(2015CB057800)
Experimental study on excavation-seepage stability for shallow shield tunnel in sandy ground with clay
MI Bo1,2,XIANG Yanyong1,2
(1.Key Laboratory of Urban Underground Engineering(Beijing Jiaotong University), Ministry of Education, Beijing 100044, China; 2.School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)
Abstract:
In view of the stability of shallow shield tunnel excavation under seepage conditions in sandy ground with clay, a test equipment was designed and established, which mainly consists of model box, water circulation system, shield tunnel and excavation face model, saturated stratum model, and measurement system. Based on model tests, the ground settlement, saturated earth pressure, and pore water pressure in front of the tunnel were measured in the process of gradual instability of the tunnel face. Results show that under the seepage condition, the pore water pressure in front of the tunnel face increased with the increase of the clay content in soil and the volume loss of the tunnel face. Seepage could evidently increase the limit effective earth pressure at the tunnel face. The limit effective earth pressure increased linearly with the increase of clay-sand ratio. The limit collapse range of the soil was mainly dependent on the rupture angle in front and rear of the tunnel face and the transverse rupture angle, in which the rear rupture angle was not much affected by the clay content in soil and seepage. Under the condition of no seepage, the limit collapse range of the soil increased with the increase of clay-sand ratio, while under the condition of seepage, the limit collapse range of the soil decreased with the increase of clay-sand ratio. The research results improved the understanding of the stability of shallow shield tunnel excavation under seepage conditions in sandy ground with clay, which can provide reference for practical engineering and limit analysis of stability.
Key words:  sandy ground with clay  shallow shield tunnel  clay-sand ratio  seepage  collapse mode of ground

友情链接LINKS