期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:张承虎,林己又,谭羽非.并联型热电联产系统的热力性能模拟[J].哈尔滨工业大学学报,2022,54(6):112.DOI:10.11918/202005031
ZHANG Chenghu,LIN Jiyou,TAN Yufei.Thermal performance simulation of a parallel combined heating and power cycle[J].Journal of Harbin Institute of Technology,2022,54(6):112.DOI:10.11918/202005031
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 566次   下载 520 本文二维码信息
码上扫一扫!
分享到: 微信 更多
并联型热电联产系统的热力性能模拟
张承虎1,2,林己又1,2,谭羽非1,2
(1.哈尔滨工业大学 建筑学院,哈尔滨 150006;2.寒地城乡人居环境科学与技术工业和 信息化部重点实验室(哈尔滨工业大学),哈尔滨 150090)
摘要:
为解决传统中低温余热回收系统循环热效率低、冷凝热难以利用的问题,提出了一种并联型有机朗肯循环与喷射式热泵联合循环系统结构。通过并联布置热机子循环与热泵子循环,并增设外部换热器,可回收全部冷凝热量用于制备辐射采暖水,同时系统输出的热电比在一定范围内可调节。建立了系统能量分析模型和分析模型,对比分析了联合循环与有机朗肯循环的热力性能。研究了部件损失与系统流特性,并分析了工质流量比和蒸发温度对系统热力性能的影响规律。结果表明:联合循环热回收效率和效率比有机朗肯循环分别提高了60.83%和30.76%。损失最大的两个部件分别是发生器和外部换热器,造成外部换热器效率低的主要原因是内部传热温差较高。工质流量比对系统热力性能影响显著,当蒸发温度低于25.2 ℃时,工质流量比的可调节范围最大。本研究成果可为高性能中低温余热回收系统的研发提供指导。
关键词:  热电联产  有机朗肯循环  喷射式热泵  热力性能  分析
DOI:10.11918/202005031
分类号:TK11
文献标识码:A
基金项目:国家自然科学基金面上项目(52076050)
Thermal performance simulation of a parallel combined heating and power cycle
ZHANG Chenghu1,2,LIN Jiyou1,2,TAN Yufei1,2
(1.School of Architecture, Harbin Institute of Technology, Harbin 150006, China; 2.Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150090, China)
Abstract:
To solve the problems of low thermal efficiency and hard utilization of condensing heat in traditional low and medium temperature heat recovery systems, a parallel type organic Rankine cycle (ORC) and ejector heat pump (EHP) combined cycle (referred to as PCHP) was proposed. The heat engine cycle and heat pump cycle were organized in parallel and an external heat exchanger (EHE) was added. All the condensing heat could be recovered for the production of radiant heating water, and the thermoelectric ratio could be adjusted within a certain range. The energy analysis model and exergy analysis model of the system were established. The thermal performance of the combined cycle and ORC were compared and analyzed. The characteristics of component exergy destruction and system exergy flow were investigated, and the effects of working fluid flow ratio and evaporating temperature on the thermal performance of the system were analyzed. Results show that the heat recovery capacity and exergy efficiency of the combined cycle were increased by 60.83% and 30.76% compared with those of ORC. The two components with the highest exergy destruction were the generator and the EHE. The main reason for the low exergy efficiency of the EHE was the high temperature difference of internal heat transfer. The working fluid flow ratio had a significant effect on the thermal performance of the system. When the evaporating temperature was lower than 25.2 ℃, the adjustable range of the working fluid flow ratio was the largest. The research results can provide guidance for the research and development of high-performance low and medium temperature heat recovery systems.
Key words:  combined heating and power cycle  organic Rankine cycle (ORC)  ejector heat pump (EHP)  thermal performance  exergy analysis

友情链接LINKS