期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:赵建有,肖宇,朱欣媛,赵阳.考虑需求紧迫度的应急车辆路径优化方法[J].哈尔滨工业大学学报,2022,54(9):27.DOI:10.11918/202201008
ZHAO Jianyou,XIAO Yu,ZHU Xinyuan,ZHAO Yang.Route optimization method for emergency vehicles considering demand urgency[J].Journal of Harbin Institute of Technology,2022,54(9):27.DOI:10.11918/202201008
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 764次   下载 794 本文二维码信息
码上扫一扫!
分享到: 微信 更多
考虑需求紧迫度的应急车辆路径优化方法
赵建有1,肖宇2,朱欣媛3,赵阳2,4
(1.长安大学 汽车学院,西安710064;2.长安大学 运输工程学院,西安710064;3.比亚迪汽车有限公司,西安710119; 4.长安大学 基建处,西安 710064)
摘要:
为提高应急管理水平,量化各受灾点物资需求紧迫度,提出考虑紧迫度的车辆最优路径规划方法。采用K-means聚类算法确定应急物资配送中心的选择以及受灾点的划分,以应急救援过程中的总时间最短、救援所花费的总费用最小以及受灾点紧迫度排序指数最大为目标,构建多目标的应急车辆路径优化模型,并设计改进的布谷鸟-蚁群组合算法进行求解。以汶川地震为背景构造算例,验证模型的有效性,结果表明:与不考虑需求紧迫度的车辆路径方案相比,考虑需求紧迫度的路径优化方案在所需运输总时间上升1.92%、救援过程总费用增加3.43%的前提下,紧迫度排序指数提高了11.2%。考虑需求紧迫度的车辆路径优化模型在保障突发灾害救援效率的同时,兼顾了不同受灾点的物资需求程度,提高了应急物资运送的公平性。
关键词:  应急管理  车辆路径优化  需求紧迫度  K-means聚类  布谷鸟-蚁群算法
DOI:10.11918/202201008
分类号:U492.2+2
文献标识码:A
基金项目:陕西省交通厅交通运输科研项目计划(19-02R)
Route optimization method for emergency vehicles considering demand urgency
ZHAO Jianyou1,XIAO Yu2,ZHU Xinyuan3,ZHAO Yang2,4
(1. School of Automobile, Chang′an University, Xi′an 710064, China; 2. College of Transportation Engineering, Chang′an University, Xi′an 710064, China; 3. BYD Company Limited, Xi′an 710119, China; 4.Capital Construction Department, Chang′an University, Xi′an 710064,China)
Abstract:
For the improvement of emergency management, the degree of material demand for different disaster-stricken sites was quantified, and an optimal route planning method for vehicles was proposed considering the urgency of demand. The K-means clustering algorithm was utilized to determine the selection of emergency material distribution centers and the division of disaster-affected points. With the shortest total time in the emergency rescue process, the minimum total cost of the rescue, and the maximum urgency ranking index of the disaster-affected points as the goal, a multi-objective emergency vehicle routing optimization model was established, and an improved cuckoo-ant colony hybrid algorithm was designed to solve it. Taking the Wenchuan earthquake as the background, the effectiveness of the proposed model was verified. Results show that compared with the vehicle routing scheme without considering demand urgency, the routing optimization scheme considering demand urgency increased the urgency ranking index by 11.2% on the premise that the total transportation time and the total cost of rescue process increased by 1.92% and 3.43%. The vehicle routing optimization model considering the urgency of demand not only ensures the rescue efficiency of sudden disasters, but also considers the material demand degree of different disasters-affected points, and improves the fairness of emergency material transportation.
Key words:  emergency management  vehicle routing optimization  demand urgency  K-means clustering  cuckoo-ant colony algorithm

友情链接LINKS