期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:杜航,徐海巍,张跃龙,楼文娟.大跨柔性光伏支架结构风压特性及风振响应[J].哈尔滨工业大学学报,2022,54(10):67.DOI:10.11918/202112064
DU Hang,XU Haiwei,ZHANG Yuelong,LOU Wenjuan.Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J].Journal of Harbin Institute of Technology,2022,54(10):67.DOI:10.11918/202112064
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 839次   下载 1356 本文二维码信息
码上扫一扫!
分享到: 微信 更多
大跨柔性光伏支架结构风压特性及风振响应
杜航,徐海巍,张跃龙,楼文娟
(浙江大学 建筑工程学院, 杭州 310058)
摘要:
大跨柔性光伏支架结构因具有良好的场地适应性和经济性而得到越来越多的应用。为完善此类光伏支架结构的抗风设计方法,通过对一种可变倾角的大跨柔性光伏支架结构进行刚性模型风洞测压试验,研究了光伏组件板面的平均风压和脉动风压系数在不同风向角和倾角组合下的分布特性以及全风向角下组件的极值风压变化规律,并给出了典型风向角下的脉动风压功率谱图。在此基础上,结合光伏组件的风压分布特点,采用ANSYS有限元软件仿真研究了该种柔性支撑光伏支架的风振响应并进一步计算得到了相应的风振系数。研究结果表明:在0°和180°风向角下,平均风压系数沿来流方向梯度分布且绝对值迅速衰减;随着风向角的增大,风压系数绝对值的最大值出现位置由迎风前缘向迎风端角部附近移动;光伏板面脉动风压分布与平均风压分布趋势类似;相比结构位移响应,钢索张力响应对风速变化不敏感,顺风向和竖向位移风振系数在U=8 m/s取得极大值,其值为2.11和1.98。本文可为光伏结构的抗风设计提供参考。
关键词:  柔性光伏支架  刚性模型测压试验  风压分布  位移响应  风振系数
DOI:10.11918/202112064
分类号:TU399
文献标识码:A
基金项目:国家自然科学基金(51978614); 浙江省自然科学基金(LY19E080026); 国家自然科学基金重点项目(51838012)
Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure
DU Hang,XU Haiwei,ZHANG Yuelong,LOU Wenjuan
(College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)
Abstract:
Long-span flexible photovoltaic support structures have been increasingly used because of their good site adaptability and economy. For improving the wind resistance design method of such structures, wind tunnel pressure test was conducted on a long-span flexible photovoltaic support structure with variable inclination angles, so as to investigate the distribution characteristics of mean and fluctuating wind pressure coefficients of photovoltaic panels under different wind azimuths as well as the extreme wind pressure change law of photovoltaic modules under full range wind azimuths. The power spectrum of the fluctuating wind pressure under typical wind azimuth was also given. On the basis of the wind pressure distribution characteristics of photovoltaic modules, the finite element software ANSYS was employed to simulate the wind-induced response of the flexible photovoltaic support structure, and the corresponding vibration coefficient was obtained. Research results show that at wind azimuths of 0° and 180°, the mean wind pressure coefficient appeared gradient distribution along the incoming flow direction and the absolute value decreased rapidly. With the increase in wind azimuth, the maximum absolute value of the wind pressure coefficient moved from the windward leading edge to the corner of the windward end. The trend of fluctuating wind pressure distribution on photovoltaic panels was similar to that of mean wind pressure distribution. Compared with structural displacement response, the cable tension response was not sensitive to the changes in wind speed. The wind vibration coefficients of the downwind and vertical displacements achieved maximum values at U=8 m/s, and the values were 2.11 and 1.98. The research can provide reference for wind-resistant design of similar photovoltaic structures.
Key words:  flexible photovoltaic support structure  rigid model pressure test  wind pressure distribution  displacement response  wind vibration coefficient

友情链接LINKS