期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:余琼,唐子鸣,张星魁,范宝秀,张志,陈振海.后插钢筋位置等对APC接头拉伸性能的影响[J].哈尔滨工业大学学报,2022,54(10):84.DOI:10.11918/202112130
YU Qiong,TANG Ziming,ZHANG Xingkui,FAN Baoxiu,ZHANG Zhi,CHEN Zhenhai.Influence of position of post-installed rebar and other factors on tensile performance of APC connector[J].Journal of Harbin Institute of Technology,2022,54(10):84.DOI:10.11918/202112130
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 671次   下载 637 本文二维码信息
码上扫一扫!
分享到: 微信 更多
后插钢筋位置等对APC接头拉伸性能的影响
余琼1,唐子鸣1,张星魁2,范宝秀2,张志3,陈振海3
(1.同济大学 土木工程学院,上海 200092;2.山西建筑工程集团有限公司,太原 030006;3.山西二建集团有限公司,太原 030013)
摘要:
为研究后插钢筋位置等对套筒灌浆搭接接头(简称APC接头)力学性能的影响,进行了45个该接头拉伸试验,研究了其破坏形态、延性、极限承载力和套筒应变等,并利用ABAQUS进行数值模拟和参数分析。试验结果表明:接头的初始刚度和延性随两钢筋距离的增大而降低;钢筋与套筒接触和钢筋间距离减小均使接头承载力降低,前者对黏结强度降低起控制作用;极限荷载时偏转(两钢筋圆心连线)方向套筒中部截面纵向受压,钢筋拉断破坏试件,其套筒中部截面压应变随钢筋直径增大而增大;极限荷载时套筒中部截面环向应变以拉应变为主,且环向平均拉应力随钢筋直径增大而增大。基于ABAQUS进行了接头精细化数值模拟,与试验结果吻合较好。模拟参数分析表明:偏转降低试件的极限承载力,偏转对发生钢筋拔出破坏试件的极限承载力影响较大,对发生钢筋拉断破坏试件的影响较小;随搭接长度增加,黏结应力曲线峰值先增大后减小,曲线饱满程度先减小后增大。根据前期及本次试验拟合得到的极限黏结强度计算公式适用性较好,可作为实际工程参考。
关键词:  灌浆套筒  搭接连接  钢筋位置  拉伸性能  搭接长度  数值模拟
DOI:10.11918/202112130
分类号:TU375
文献标识码:A
基金项目:
Influence of position of post-installed rebar and other factors on tensile performance of APC connector
YU Qiong1,TANG Ziming1,ZHANG Xingkui2,FAN Baoxiu2,ZHANG Zhi3,CHEN Zhenhai3
(1.College of Civil Engineering, Tongji University, Shanghai 200092, China; 2.Shanxi Construction Engineering Group Co. Ltd., Taiyuan 030006, China; 3.Shanxi Erjian Group Co. Ltd., Taiyuan 030013, China)
Abstract:
To study the effects of parameters such as the position of the post-installed rebar on the mechanical behaviors of a new type of grouted sleeve lapping connector APC (all vertical members precasted in concrete structures), a total of 45 specimens were designed for tensile test. The failure mode, ductility, ultimate bearing capacity, and sleeve strain of the specimens were studied, and ABAQUS was used for numerical simulation and parametric analysis. Test results showed that the initial stiffness and ductility of the connector decreased with the increase in the distance between two rebars. The decrease in the distance between the rebars as well as the contact between the rebar and the sleeve both reduced the bearing capacity of the connector, and the contact between the rebar and the sleeve played a dominant role in the reduction of bonding strength. Under ultimate load, the middle section of the sleeve in the deflection direction (the direction of the line connecting the centers of two rebars) was longitudinally compressed, and the compressive strain increased with the increase in the rebar diameter for specimens with tensile failure of rebars. Under ultimate load, the circumferential strain of the middle section of the sleeve was dominated by tensile strain, and the average circumferential tensile stress increased with the increase in the rebar diameter. Refined numerical simulation of connectors was carried out based on ABAQUS, and the results were in good agreement with the test results. The simulation parameter analysis showed that the deflection reduced the ultimate bearing capacity of the specimen, and had a greater influence on the ultimate bearing capacity of the specimen with pull-out failure of rebar than the specimen with tensile failure of rebar. With the increase in the lap length, the peak value of the bonding stress curve first increased and then decreased, while the fullness of the bonding stress curve first decreased and then increased. The ultimate bonding strength calculation formula obtained from current and previous tests has been verified to be applicable and safe, which can be used as a reference for engineering applications.
Key words:  grouted sleeve  lapping connector  position of rebar  tensile behavior  lap length  numerical simulation

友情链接LINKS