期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:吴洁琼,郭莉,金浏,杜修力.非均匀锈蚀钢筋-混凝土黏结性能试验[J].哈尔滨工业大学学报,2022,54(10):109.DOI:10.11918/202111098
WU Jieqiong,GUO Li,JIN Liu,DU Xiuli.Test on bond behavior between non-uniform corroded steel and concrete[J].Journal of Harbin Institute of Technology,2022,54(10):109.DOI:10.11918/202111098
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 753次   下载 1228 本文二维码信息
码上扫一扫!
分享到: 微信 更多
非均匀锈蚀钢筋-混凝土黏结性能试验
吴洁琼,郭莉,金浏,杜修力
(城市与工程安全减灾教育部重点实验室(北京工业大学),北京 100124)
摘要:
为探究非均匀锈蚀对钢筋与混凝土黏结性能的劣化规律,浇筑了8榀钢筋混凝土梁试件,首先通过外加电流引入钢筋锈蚀;钢筋达到设计质量损失率后停止通电,记录混凝土表面锈胀裂缝开展情况;然后对梁试件施加三点弯曲荷载以测试其黏结性能;最后梁试件黏结破坏后,将黏结区锈蚀钢筋取出进行三维扫描测试。试验结果表明:钢筋锈蚀产物体积膨胀引起混凝土保护层产生沿纵向受拉钢筋轴线方向的锈胀裂缝,且混凝土表面最大锈胀裂缝宽度与钢筋质量损失率呈对数关系;锈蚀钢筋表面存在锈坑,随着钢筋质量损失率增加到10.3%,锈坑总长度、总宽度和总深度分别显著增加了68.27、40.21、9.98 mm,即锈坑总长度随钢筋质量损失率的增加变化最为显著。基于试验结果,建立了考虑非均匀锈蚀影响的钢筋与混凝土相对黏结强度退化模型以及质量损失率与混凝土表面最大锈胀裂缝宽度的相关关系模型;并据此提出了基于混凝土表面最大锈胀裂缝宽度的相对黏结强度计算模型,且验证了模型的有效性。
关键词:  非均匀锈蚀  锈胀裂缝  梁式试验  钢筋混凝土  黏结强度
DOI:10.11918/202111098
分类号:TU375.1
文献标识码:A
基金项目:国家重点研发计划(2019YFC1511003); 国家自然科学基金(1,6)
Test on bond behavior between non-uniform corroded steel and concrete
WU Jieqiong,GUO Li,JIN Liu,DU Xiuli
(Key Lab of Urban Security and Disaster Engineering (Beijing University of Technology), Ministry of Education, Beijing 100124, China)
Abstract:
Eight beams of reinforced concrete were prepared to investigate the deterioration law of non-uniform corrosion on the bond performance of steel bar and concrete. First, the corrosion of the steel bar was obtained by applied-current. The electricity was stopped when the specimen reached the designed mass loss rate, and the development of corrosive cracks on the concrete surface was recorded. Then, three-point bending load was applied to the beam specimen to test its bonding performance. Finally, the corroded steel bar in the bonding area was taken out for 3D scanning test after the bond failure of the beam specimen. Test results show that the volume expansion of the corrosion products of the steel bar caused the corrosive cracks in the concrete protective layer along the axis of the longitudinal tensile bar, and the maximum corrosive crack widths on the concrete surface had a logarithmic relationship with the mass loss rate of the steel bar. There were rust pits on the surface of the corroded steel bar, and as the mass loss rate of steel bar increased to 10.3%, the total length, width, and depth of the rust pits increased by 68.7,0.21, and 9.98 mm, respectively, suggesting that the total length of the rust pits had the most significant increase. On the basis of the test results, a relative bond strength degradation model of steel bar and concrete was established in consideration of the influence of non-uniform corrosion. According to the correlation between the mass loss rate and the maximum corrosive crack width on the concrete surface, a calculation model of relative bond strength based on the maximum corrosive crack width on the concrete surface was proposed and verified.
Key words:  non-uniform corrosion  corrosive cracks  beam test  reinforced concrete  bond strength

友情链接LINKS