引用本文: | 孙艳国,许成顺,杜修力,豆鹏飞,王丕光,孙毅龙.上覆软黏土层对桩-筒复合基础承载性能的影响[J].哈尔滨工业大学学报,2023,55(2):108.DOI:10.11918/202202024 |
| SUN Yanguo,XU Chengshun,DU Xiuli,DOU Pengfei,WANG Piguang,SUN Yilong.Effect of overlying soft clay on bearing characteristics of pile-bucket composite foundation[J].Journal of Harbin Institute of Technology,2023,55(2):108.DOI:10.11918/202202024 |
|
摘要: |
中国大多数海洋场地存在上覆软弱地层,这种海床特性对海上风电场建设十分不利。为研究上覆软黏土层对新型桩-筒复合基础承载性能的影响,基于有限元软件ABAQUS,建立不同厚度的上覆软黏土层场地中桩-筒复合基础数值分析模型,分别对桩-筒复合基础施加单向荷载(V、H、M)和复合荷载(H-M),研究上覆软黏土层厚度对各向极限承载力、桩-筒复合基础中各结构荷载分担比以及初始刚度kinit的影响。结果表明:桩-筒复合基础各向极限承载力随着上覆软黏土层厚度的增加而减小,当上覆软黏土层厚度等于筒结构入土深度(b=6 m)时,桩-筒复合基础的竖向极限承载力降低了12.86%,水平极限承载力降低了46.55%,抗弯极限承载力降低了34.86%;桩-筒复合基础的初始刚度kinit随着上覆软黏土层厚度的增加而减小。海上风电桩-筒复合基础的设计应充分考虑上覆软黏土层对承载特性的影响。 |
关键词: 桩-筒复合基础 海上风机 上覆软黏土层 降低率 荷载分担比 初始刚度 |
DOI:10.11918/202202024 |
分类号:TU47 |
文献标识码:A |
基金项目:国家自然科学基金优秀青年基金(51722801) |
|
Effect of overlying soft clay on bearing characteristics of pile-bucket composite foundation |
SUN Yanguo1,XU Chengshun1,DU Xiuli1,DOU Pengfei2,WANG Piguang1,SUN Yilong1
|
(1.Key Laboratory of Urban Security and Disaster Engineering (Beijing University of Technology), Ministry of Education, Beijing 100124, China; 2.School of Civil Engineering, Tsinghua University, Beijing 100084, China)
|
Abstract: |
There are overlying soft soil layers in most offshore sites of China, which is disadvantageous to the construction of offshore wind farms. To investigate the effect of overlying soft clay on the bearing characteristics of pile-bucket composite foundation for offshore wind turbines, we established numerical analysis models for pile-bucket composite foundation in the overlying soft clay with different thicknesses. The bearing characteristics were analyzed under unidirectional loading (V, H, M) and combined loading (H-M) by using finite element software ABAQUS. The influences of the thickness of overlying soft clay on the ultimate bearing capacity in all directions, the bearing capacity sharing ratio of different structures of pile-bucket composite foundation, and the initial stiffness kinit were studied. Results show that the ultimate bearing capacity of pile-bucket composite foundation in all directions gradually decreased with the increase in the thickness of overlying soft clay. When the thickness of overlying soft clay was 6 m (equal to the inserted depth of bucket penetration), the vertical ultimate bearing capacity of pile-bucket composite foundation was reduced by 12.86%, the horizontal ultimate bearing capacity was reduced by 46.55%, and the ultimate moment capacity was reduced by 34.86%. The initial stiffness kinit of pile-bucket composite foundation decreased with the increase in the thickness of the overlying soft clay. In summary, the effect of the overlying soft clay on the bearing characteristics of pile-bucket composite foundation should be taken into consideration in the design of foundations for offshore wind turbines. |
Key words: pile-bucket composite foundation offshore wind turbine overlying soft clay reduction rate bearing capacity sharing ratio initial stiffness |