期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:李巧茹,刘桂欣,陈亮,于潇.自适应BAS优化RBF神经网络的短时交通流预测[J].哈尔滨工业大学学报,2023,55(3):93.DOI:10.11918/202108096
LI Qiaoru,LIU Guixin,CHEN Liang,YU Xiao.Short-term traffic flow prediction based on adaptive BAS optimized RBF neural network[J].Journal of Harbin Institute of Technology,2023,55(3):93.DOI:10.11918/202108096
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 3662次   下载 3348 本文二维码信息
码上扫一扫!
分享到: 微信 更多
自适应BAS优化RBF神经网络的短时交通流预测
李巧茹,刘桂欣,陈亮,于潇
(河北工业大学 土木与交通学院, 天津 300401)
摘要:
为提高短时交通流预测精度,针对传统径向基函数(radial basis function, RBF)神经网络短时交通流预测模型中心值固定、易受漂移数据干扰问题,提出自适应天牛须搜索算法(beetle antennae search algorithm, BAS)优化RBF神经网络的短时交通流预测模型。模型采用自适应步长提高BAS算法迭代速度和寻优能力,结合DBSCAN聚类确定RBF神经网络隐含层径向基函数网络中心,进而优化神经网络结构。通过路网真实交通流数据进行训练,选择常用于短时交通流预测的BP神经网络,RBF神经网络,广义RBF神经网络进行对比。结果表明:优化后的模型预测结果相较BP神经网络平均绝对误差降低了1.87%、平均绝对百分比误差降低了15.96%、均方根误差降低了3.24%,拟合度提高了3.96%;相较广义RBF神经网络平均绝对误差降低1.36%、平均绝对百分比误差降低了5.01%、均方根误差降低了2.19%,拟合度提高了2.5%。改进后的短时交通流预测模型能够为智能交通诱导提供可靠的预测值。
关键词:  交通流  预测模型  RBF神经网络  BAS  DBSCAN
DOI:10.11918/202108096
分类号:TP301.6
文献标识码:A
基金项目:国家自然科学基金(51908187)
Short-term traffic flow prediction based on adaptive BAS optimized RBF neural network
LI Qiaoru,LIU Guixin,CHEN Liang,YU Xiao
(School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China)
Abstract:
In order to improve the accuracy of short-term traffic flow prediction, an improved traffic flow predicting model was proposed by using the adaptive beetle antennae search (BAS) algorithm to optimize the radial basis function (RBF) neural network. This was done in consideration of the drawbacks of the traditional RBF neural network model for short-term traffic flow prediction, such as fixed center value and vulnerability to drift data interference. In this model, the adaptive step size was utilized to improve the iteration speed and optimization ability of BAS algorithm. The center of the RBF hidden layer was determined based on the DBSCAN cluster, and thus the neural network structure was optimized. Traffic flow datasets were collected from real road network for training, and the proposed model was compared with widely-used models, such as BP neural network, RBF neural network, and generalized RBF neural network. Results showed that in comparison with the BP neural network, the proposed method reduced the mean absolute error by 1.87, the mean absolute percentage error by 15.96, and the root mean square error by 3.24%; the fitting degree of the proposed method was improved by 3.96%. In comparison with the generalized RBF neural network, the proposed method reduced the mean absolute error by 1.36, the mean absolute percentage error by 5.01, and the root mean square error by 2.19%; the fitting degree of the proposed method was improved by 2.5%. The proposed short-term traffic flow prediction model can provide accurate predictions for intelligent traffic guidance.
Key words:  traffic flow  prediction model  RBF neural network  BAS  DBSCAN

友情链接LINKS