引用本文: | 王庆海,陈琦,王中原,尹秋霖.考虑导引头多约束的滑翔制导炮弹弹道规划[J].哈尔滨工业大学学报,2023,55(12):18.DOI:10.11918/202211062 |
| WANG Qinghai,CHEN Qi,WANG Zhongyuan,YIN Qiulin.Trajectory programming of gliding guided projectile considering multiple constraints of seeker[J].Journal of Harbin Institute of Technology,2023,55(12):18.DOI:10.11918/202211062 |
|
摘要: |
为提高制导炮弹在大着角情况下导引头捕捉目标的速度,减小末制导起始点角度偏差,在传统制导炮弹方案弹道规划方法(trajectory programming method,TPM)的基础上考虑末制导段,提出一种考虑导引头多约束的弹道规划方法(trajectory programming method-constraints of seeker,TPM-CS)。根据导引头最大探测距离建立末制导起始点约束,根据弹目几何关系和导引头视场角建立攻击路径约束,并建立最小化前置角和控制变量幅值的目标函数。为实现制导炮弹初始弹道倾角、偏角、火箭点火时间、滑翔启控时间、导引头开启时间等参数的最佳匹配,建立了5阶段弹道规划模型,并采用多阶段Radau伪谱法将该弹道规划问题转化为非线性规划问题,最后调用非线性规划求解器SNOPT进行求解。选取不同性能参数的导引头进行仿真,分析了导引头最大探测距离和导引头视场角对方案弹道的影响。将文中提出的弹道规划方法与传统弹道规划方法进行对比仿真,结果表明,相比于传统方法,文中所提方法规划方案弹道的末制导初始角度偏差缩小71.590%,导引头对目标保持照射状态的时间延长6.120倍,验证了文中所提弹道规划方法的有效性和优越性。 |
关键词: 制导炮弹 弹道规划 5段式模型 导引头多约束 Radau伪谱法 |
DOI:10.11918/202211062 |
分类号:TJ413.+6 |
文献标识码:A |
基金项目:国家自然科学基金(52202475);江苏省自然科学基金(BK20200498) |
|
Trajectory programming of gliding guided projectile considering multiple constraints of seeker |
WANG Qinghai,CHEN Qi,WANG Zhongyuan,YIN Qiulin
|
(School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)
|
Abstract: |
To improve the target capture speed of the guided projectile under the condition of large landing angle and reduce the angle deviation of the starting point of the terminal guidance, considering the terminal guidance section, a trajectory programming method considering multiple constraints of the seeker (TPM-CS) is proposed based on the traditional guided projectile trajectory programming method (TPM). The starting point constraint of the terminal guidance is established according to the maximum detection distance of the seeker, and the attack path constraint is established according to the geometric relationship between the projectile and the target as well as the angle of view of the seeker. Additionally, an objective function of minimizing the amplitude of leading angle and the amplitude of control variables is established. In order to achieve the best matching of parameters such as the initial trajectory inclination angle, deflection angle, rocket ignition time, gliding start-up time and seeker opening time of the guided projectile, a five-phases trajectory programming model is established, and the multi-phases Radau pseudo-spectrum method is used to transform the trajectory programming problem into a nonlinear programming problem. Finally, the nonlinear programming solver SNOPT is used to solve the problem. The seeker with different constrains parameters is selected for simulation, and the effect of the maximum detection range of the seeker and the angle of view of the seeker on the trajectory of the scheme are analyzed. The method proposed in this paper is compared with the traditional trajectory programming method for simulation. The simulation results show that compared with the traditional method, the initial angle deviation of the terminal guidance of the proposed trajectory programming scheme is reduced by 71.590%, and the time for the seeker to keep the target illuminated is prolonged by 6.120 times, which verifies the effectiveness and superiority of the proposed trajectory programming method. |
Key words: guided projectile trajectory programming five phases model multiple constraints of seeker Radau pseudo-spectral method |