期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:郭万金,于苏扬,田玉祥,赵立军,曹雏清.机器人打磨自适应变阻抗主动柔顺恒力控制[J].哈尔滨工业大学学报,2023,55(12):54.DOI:10.11918/202212066
GUO Wanjin,YU Suyang,TIAN Yuxiang,ZHAO Lijun,CAO Chuqing.Active compliance constant force control with adaptive variable impedance for robotic grinding[J].Journal of Harbin Institute of Technology,2023,55(12):54.DOI:10.11918/202212066
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 717次   下载 976 本文二维码信息
码上扫一扫!
分享到: 微信 更多
机器人打磨自适应变阻抗主动柔顺恒力控制
郭万金1,2,3,于苏扬1,田玉祥1,赵立军2,4,曹雏清3,4,5
(1.道路施工技术与装备教育部重点实验室(长安大学),西安 710064;2.机器人技术与系统国家重点实验室 (哈尔滨工业大学),哈尔滨 150000;3.芜湖哈特机器人产业技术研究院有限公司博士后工作站,安徽 芜湖 241007; 4.长三角哈特机器人产业技术研究院,安徽 芜湖 241007;5.安徽工程大学 计算机与信息学院,安徽 芜湖 241000)
摘要:
为解决工业机器人打磨过程中存在复杂时变非线性耦合与不确定性扰动导致机器人柔顺恒力打磨自适应调节能力不足的问题,首先给出了一种可实现沿轴向平移与旋转运动解耦的力控末端执行器,其次设计了一种自抗扰控制器和一种粒子群神经网络变阻抗控制器分别作为内环控制和外环控制,在此基础上,提出了一种机器人自适应变阻抗主动柔顺恒力控制方法,用于在线自适应优化阻抗参数,动态调节打磨力修正量,实现机器人打磨作业自适应主动柔顺恒力控制。最后采用Lyapunov稳定性理论分析证明了所提出方法的闭环稳定性。通过机器人打磨系统虚拟样机联合仿真实验和机器人平台实物实验,验证了所提出方法的有效性。实验结果表明,所提方法能够较好实现静态与动态期望打磨力跟踪,减小了打磨力波动、力超调量以及打磨初期打磨工具处的冲击力,提高了打磨力控制系统抗扰动稳定性、恒力跟踪性能和动态响应能力,对复杂多变工况机器人打磨作业具有较强的适应性与鲁棒性。
关键词:  工业机器人打磨  恒力控制  主动柔顺  自适应变阻抗  机器人末端执行器
DOI:10.11918/202212066
分类号:TP242
文献标识码:A
基金项目:国家自然科学基金面上项目(52275005);中央高校基本科研业务费专项资金(300102253201);中国博士后科学基金(2022M722435);哈尔滨工业大学机器人技术与系统国家重点实验室开放研究项目(SKLRS-2020-KF-08);安徽省教育厅科学研究重点项目(KJ2020A0364);高校优秀青年人才支持计划(2019YQQ023)
Active compliance constant force control with adaptive variable impedance for robotic grinding
GUO Wanjin1,2,3,YU Suyang1,TIAN Yuxiang1,ZHAO Lijun2,4,CAO Chuqing3,4,5
(1.Key Laboratory of Road Construction Technology and Equipment, Ministry of Education(Changan University), Xian 710064, China; 2.State Key Laboratory of Robotics and System (Harbin Institute of Technology), Harbin 150000, China; 3.Post-Doctoral Research Center, Wuhu HIT Robot Technology Research Institute Co., LTD, Wuhu 241007, Anhui, China; 4.Yangtze River Delta HIT Robot Technology Research Institute, Wuhu 241007, Anhui, China; 5.School of Computer and Information,Anhui Polytechnic University, Wuhu 241000, Anhui, China)
Abstract:
To solve the problem that the adaptive adjustment ability of robotic compliant constant force grinding is insufficient due to the complex time-varying nonlinear coupling and uncertainty disturbance in the industrial robot grinding process, a robotic force-controlled end-effector is presented, which can decouple the translational and rotational motions about the axial direction and the axis of the end-effector. An active disturbance rejection controller and a variable impedance controller with particle swarm optimization and BP neural network are designed as the inner loop control and the outer loop control respectively. Moreover, a robotic active compliance constant force control method with the adaptive variable impedance is proposed to obtain the online adaptive optimization of impedance parameters and the dynamic adjustment of grinding force correction, and to realize the adaptive and active compliance constant force control for robotic grinding. The closed-loop stability of the proposed method is guaranteed by the Lyapunov stability theory. The effectiveness of the proposed method is verified by the co-simulation experiments on the virtual prototype platform of robotic grinding system and the physical experiment on the robotic experimental platform. The experimental results show that the proposed method can better realize the static and dynamic desired force tracking of the robotic grinding, reduce the grinding force fluctuation, force overshoot and the impact force of the grinding tool in the early stage of robotic grinding, improve the anti-disturbance stability, the constant force tracking performance and dynamic response ability of the robotic grinding force control system, and provide strong adaptability and robustness to handle the impact for the complicated and various working conditions of the robotic grinding.
Key words:  industrial robot grinding  constant force control  active compliance  adaptive variable impedance  robotic end-effector

友情链接LINKS