期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:罗阿妮,曹紫莺,刘贺平,冯亚铭,陆金鑫.含冗余拉索的张拉整体拼接结构变形能力分析[J].哈尔滨工业大学学报,2023,55(12):86.DOI:10.11918/202212014
LUO Ani,CAO Ziying,LIU Heping,FENG Yaming,LU Jinxin.Analysis of shape-change capabilities of tensegrity structures with redundant cables[J].Journal of Harbin Institute of Technology,2023,55(12):86.DOI:10.11918/202212014
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 759次   下载 1048 本文二维码信息
码上扫一扫!
分享到: 微信 更多
含冗余拉索的张拉整体拼接结构变形能力分析
罗阿妮,曹紫莺,刘贺平,冯亚铭,陆金鑫
(哈尔滨工程大学 机电工程学院,哈尔滨 150001)
摘要:
为研究含冗余拉索的张拉整体结构的变形能力,基于能量耗散最少的索驱动理念,提出了实现结构变形的最优驱动方式的选择方法。首先,对张拉整体基本单元的结构参数、构件与节点的连接关系进行设置,并对索长收缩后结构新的稳定状态进行力学性能分析,得出新的节点坐标计算公式;其次,赋值结构参数和材料参数,对结构的变形过程进行分析:先收缩被动索对张拉整体结构进行预紧,计算除主动索外结构额外耗散的弹性势能,后收缩主动索使张拉整体结构发生变形,计算主动索能量耗散做功和结构的最终变形,提出结构变形的最优驱动方式的评价标准;最后,以含冗余拉索的双层轴向拼接结构为例,区分结构的主动索与被动索,进行最优驱动方式研究。分析结果表明:对于结构的单一轴向变形,当斜索为主动索、中间水平索为被动索时,结构的轴向变化最大,能量耗散最小;对于包含轴向变形与扭转变形的结构复合变形,当与杆构件旋向相反的斜索为主动索,剩余斜索为被动索时,结构的复合变形最大,能量耗散最小。
关键词:  张拉整体  可展结构  索驱动  力平衡  变形分析
DOI:10.11918/202212014
分类号:TU323;TH122
文献标识码:A
基金项目:国家自然科学基金(2,1);黑龙江省自然科学基金(LH2019E023,LH2020E062)
Analysis of shape-change capabilities of tensegrity structures with redundant cables
LUO Ani,CAO Ziying,LIU Heping,FENG Yaming,LU Jinxin
(College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China)
Abstract:
To study the deformation capacity of tensegrity structures with redundant cables, this paper proposed a method to select the optimal driving mode to achieve structural deformation based on the cable-driven concept with minimal energy dissipation. Firstly, the structural parameters of the tensegrity basic unit and the connection relationship between the member and the node were set, and the mechanical properties analysis was conducted on the structure in the new stable state after the contraction of the cable. This analysis yielded a new calculation formula of the node coordinates. Secondly, the structural parameters and material parameters were assigned to analyze the deformation process of the structure. The passive cables was firstly shrunk to prestress the tensegrity structure, and the additional dissipated elastic potential energy of the structure except for the active cables was calculated. Then, the active cables was shrunk to induce the deformation of the tensegrity structure. The energy dissipation work of the active cables and the final deformation of the structure were calculated. Moreover, the evaluation criteria of the optimal driving mode of the structural deformation were proposed. Finally, taking the double-layer axial splice structure with redundant cables as an example, the active and passive cables of the structure were differentiated and the optimal driving mode was studied. The results show that for the single axial deformation of the structure, when the diagonal cables are active and the middle horizontal cable is passive, the axial change of the structure is maximized while the energy dissipation is minimized. For the composite deformation involving axial deformation and torsional deformation, the composite deformation of the structure is maximized and the energy dissipation is minimized when the diagonal cables opposite to the rod member are active while the remaining diagonal cables are passive.
Key words:  tensegrity structures  deployable structures  cable actuation  force equilibrium  deformation analysis

友情链接LINKS