期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:韩小雷,郑振光,杨坚,林鹏,陈鑫凯,吴梓楠,季静.考虑结构空间约束的现浇楼盖梁跨中受弯性能试验[J].哈尔滨工业大学学报,2024,56(6):61.DOI:10.11918/202303083
HAN Xiaolei,ZHENG Zhenguang,YANG Jian,LIN Peng,CHEN Xinkai,WU Zinan,JI Jing.Experimental study on mid-span flexural performance of floor beams incorporating structural spatial restraints[J].Journal of Harbin Institute of Technology,2024,56(6):61.DOI:10.11918/202303083
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1245次   下载 1692 本文二维码信息
码上扫一扫!
分享到: 微信 更多
考虑结构空间约束的现浇楼盖梁跨中受弯性能试验
韩小雷1,2,郑振光1,杨坚3,林鹏3,陈鑫凯1,吴梓楠1,季静1,2
(1.华南理工大学 土木与交通学院,广州 510640;2.亚热带建筑科学国家重点实验室(华南理工大学),广州 510640; 3.广州珠江外资建筑设计院有限公司,广州 510060)
摘要:
为研究结构空间约束导致现浇钢筋混凝土楼盖梁跨中受弯承载力超强的机制,以楼盖梁在结构中的空间位置和配筋率为变量,设计12根上部架立筋不伸入支座的楼盖梁试件并开展跨中受弯静力试验,并基于建立经典混凝土理论的试验方法进行了4根简支梁对比试验。对梁试件破坏形态、承载力、变形能力、轴向伸长进行研究,结果表明:楼盖梁试件承载力与按受弯构件计算承载力之比为1.57~2.77,与相应矩形简支梁试件和T形简支梁试件承载力相比均有较大提高,超强程度与配筋率成反比;与简支梁试件相比,楼盖梁试件跨中截面破坏形态未因轴压力而发生显著改变,但楼盖梁试件延性降低;楼盖梁试件轴向伸长随挠度的增大而增大。将楼盖梁视为压弯构件,提出根据楼盖梁试验峰值荷载确定相应轴力和弯矩的方法。计算结果表明,楼盖梁试件跨中截面压弯状态弯矩与受弯状态弯矩的比值为1.28~2.19。楼盖梁试件有限元数值模拟结果表明,随着楼盖梁截面包含的楼板范围增大,轴力沿梁跨分布趋于均匀。
关键词:  楼盖梁  结构空间约束  跨中受弯性能  承载力  轴向伸长  压弯构件
DOI:10.11918/202303083
分类号:TU375.1
文献标识码:A
基金项目:亚热带建筑科学国家重点实验室自主研究课题(2022KA02)
Experimental study on mid-span flexural performance of floor beams incorporating structural spatial restraints
HAN Xiaolei1,2,ZHENG Zhenguang1,YANG Jian3,LIN Peng3,CHEN Xinkai1,WU Zinan1,JI Jing1,2
(1.School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China; 2.State Key Laboratory of Subtropical Building Science(South China University of Technology), Guangzhou 510640, China; 3.Guangzhou Pearl River Foreign Investment Architectural Designing Institute Co., Ltd., Guangzhou 510060, China)
Abstract:
To investigate the mechanism of flexural overstrength of cast-in-situ reinforced concrete floor beams incorporating structural spatial restraints, this article takes the spatial position and longitudinal reinforcement ratio of the floor beams in the structure as variables, designs 12 floor beam specimens with upper erection bar not extending into the support, and conducts static tests on the mid-span flexural performance. Based on the experimental method of establishing classical concrete theory, a comparative test of 4 simply supported beams is conducted. The failure mode, bearing capacity, deformation capacity and axial elongation of beam specimens are studied in this article. The results show that the ratio of the bearing capacity of the floor beam specimen to the calculated bearing capacity based on flexural components is 1.57-2.77, which is significantly improved compared to the corresponding rectangular and T-shaped simply supported beam specimens. The degree of overstrength is inversely proportional to the longitudinal reinforcement ratio. Compared with the simply supported beam, the failure mode of the mid-span section of the floor beams do not change significantly due to the axial compression, but the ductility of the floor beam decrease. The axial elongation increases with the increase of the deflection. Regarding the floor beams as compression-flexure components, a method is proposed to determine the corresponding axial force and flexural moment according to the test peak load of the floor beam. The calculation results show that the ratio of the moment of the mid-span section of the floor beams subjected to compression and flexure to the moment subjected to flexure is 1.28 to 2.19. The finite element numerical simulation of the floor beam is carried out in this article. The results show that with the increase of the included floor range of the floor beam section, the axial force tends to be uniform along the beam span.
Key words:  floor beams  structural spatial restraints  mid-span flexural performance  capacity  axial elongation  compression-flexure components

友情链接LINKS