期刊检索

  • 2025年第57卷
  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:邵苛苛,宋孟杰,沈俊,蔡标华,甄泽康,石含,张旋,张龙.极地低温环境结冰预探测方法与防除破冰技术研究进展[J].哈尔滨工业大学学报,2025,57(2):1.DOI:10.11918/202407059
SHAO Keke,SONG Mengjie,SHEN Jun,CAI Biaohua,ZHEN Zekang,SHI Han,ZHANG Xuan,ZHANG Long.Research progress on icing prediction and detection methods, and anti/de-icing and ice-breaking technologies in polar low-temperature environments[J].Journal of Harbin Institute of Technology,2025,57(2):1.DOI:10.11918/202407059
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 96次   下载 49 本文二维码信息
码上扫一扫!
分享到: 微信 更多
极地低温环境结冰预探测方法与防除破冰技术研究进展
邵苛苛1,宋孟杰1,沈俊1,蔡标华2,甄泽康1,石含1,张旋1,张龙1
(1.北京理工大学 机械与车辆学院,北京 100081;2.武汉第二船舶设计研究所,武汉 430205)
摘要:
极地低温、高湿、高风速、高盐度、极昼极夜等极端环境易导致船舶、低空飞行器等近海面装备表面结冰,严重影响装备正常运行。为应对极地复杂环境带来的冰害,国内外学者围绕结冰预测探测方法、防除破冰技术等开展了大量对比实验与数理建模研究,对既有涉冰研究进展进行了分析总结。结果表明:结冰预测方法主要基于经验、理论与数值3种模型,其中,理论模型准确度小于50%,而数值模型准确度大于60%;结冰探测主要采用观测与检测两种方法,其中,平均结冰厚度的观测法与检测法测量精度分别可达±0.038 mm与±0.05 mm;极地装备表面的覆冰源自海浪飞沫、雨雾飞沫与大气,其中,海浪飞沫占比高达90%;防除冰技术有被动式和主动式两种,前者能耗低且寿命短,后者效率高但装置复杂,两者结合仍是未来发展趋势;极地水上船舶破冰主要采用冲撞、顶撞与首压技术,冰下潜艇破冰则采用机械挤压、鱼雷爆破与激光融冰等直接破冰或“先弱冰再破冰”的耦合技术。基于本文对极地低温环境结冰预探测方法与防除破冰技术的分析,进一步提出了既有方法与技术的优化方向,以期为复杂低温环境中载运装备及工程设备的冰灾护控技术发展提供参考与借鉴。
关键词:  极地  预冰  探冰  防冰  除冰  破冰
DOI:10.11918/202407059
分类号:TB69
文献标识码:A
基金项目:国家自然科学基金(3,7,52306003);北京市自然科学基金(4,6,3232032);防除冰重点实验室项目(IADL20230113,IADL20220304);北京市科协青年人才托举工程(BYESS2023352)
Research progress on icing prediction and detection methods, and anti/de-icing and ice-breaking technologies in polar low-temperature environments
SHAO Keke1,SONG Mengjie1,SHEN Jun1,CAI Biaohua2,ZHEN Zekang1,SHI Han1,ZHANG Xuan1,ZHANG Long1
(1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2.Wuhan Second Ship Design Research Institute, Wuhan 430205, China)
Abstract:
Extreme environments such as low temperature, high humidity, high wind speed, high salinity, extreme daytime, and extreme nighttime can easily lead to icing on the surface of ships, low-altitude vehicles and other near-sea equipment, which seriously affects the normal operation of such equipment. To cope with the ice hazards brought by the complex environments, scholars both domestically and internationally have conducted numerous comparative experiments and mathematical modeling studies on icing detection and prediction methods, as well as anti-icing, de-icing, and ice-breaking technologies. This paper provides an analysis and summary of the existing research progress in the field of ice-related studies. Results show that icing prediction methods primarily rely on empirical, theoretical and numerical models, with theoretical models having an accuracy below 50% while numerical models achieve an accuracy above 60%. Ice detection mainly adopts two methods of observation and detection, in which the measurement accuracy of the average ice thickness of the observation method and detection method can reach ±0.038 mm and ±0.05 mm, respectively. Ice cover on the surface of polar equipment originates from wave droplets, rain droplets and the atmosphere, with wave droplets accounting for up to 90%. Ice prevention technologies include passive and active methods, with the former having low energy consumption and short service life,and the latter being more efficient but with complex device setups. The combination of both remains a future development trend. In polar regions, ice-breaking for waterborne vessels primarily involves ramming, crushing, and pressure ridging techniques, while ice-breaking for submarines beneath the ice utilizes mechanical squeezing, torpedo blasting, laser ice melting, and other direct ice-breaking methods or coupled techniques such as "weak ice first, then ice-breaking" coupling techniques. Based on the analysis of icing prediction and detection methods, and anti-icing, de-icing and ice-breaking technologies in polar low-temperature environments, further optimization directions for existing methods and technologies are proposed. These insights aim to provide references for the development of ice disaster protection and control technology for the carrier equipment and engineering equipment in complex low-temperature environments.
Key words:  polar  icing prediction  icing detection  anti-icing  de-icing  ice-breaking

友情链接LINKS