引用本文: | 徐略勤,刘杰,岳克锋,潘锐华,范磊.蝶形钢板阻尼器力学性能与几何参数优化研究[J].哈尔滨工业大学学报,2025,57(3):69.DOI:10.11918/202312009 |
| XU Lueqin,LIU Jie,YUE Kefeng,PAN Ruihua,FAN Lei.Mechanical performance and geometric parameter optimization of butterfly-shaped steel plate damper[J].Journal of Harbin Institute of Technology,2025,57(3):69.DOI:10.11918/202312009 |
|
|
|
本文已被:浏览 32次 下载 70次 |
 码上扫一扫! |
|
蝶形钢板阻尼器力学性能与几何参数优化研究 |
徐略勤1,2,刘杰1,岳克锋1,潘锐华1,范磊1
|
(1.重庆交通大学 土木工程学院,重庆 400074; 2.省部共建山区桥梁及隧道工程国家重点实验室(重庆交通大学),重庆 400074)
|
|
摘要: |
为了提升新型蝶形钢板阻尼器的耗能效率并优化其几何参数,首先推导了新型阻尼器的初始刚度和屈服力计算公式,然后采用拟静力试验对8个阻尼器试件的失效模式、力学参数和滞回性能进行了对比研究,最后通过67个模型的数值模拟分析,探讨了耗能肋宽度比a/b、高厚比H/t、耗能肋条数n、钢板片数N等参数对阻尼器力学性能的影响规律。结果表明:新型阻尼器力学性能稳定,滞回曲线饱满,极限位移角大于10%,最大等效黏滞阻尼比超过0.4,其力学性能与耗能肋条数n和钢板片数N成比例,便于标准化设计,且初始刚度、屈服力和等效屈服位移均具有良好的理论解析性,理论公式的平均计算误差分别为14.0%、8.4%、-10.9%;通过合理设计耗能肋的尺寸,可实现其全截面屈服的变形状态,使得钢材单位体积耗能量最大达0.217 J/mm3,当耗能肋几何参数满足a/b=0.25~0.50、H/t=20~30时,新型阻尼器可实现最优的耗能经济性。 |
关键词: 蝶形钢板阻尼器 耗能效率 几何参数 拟静力试验 数值模拟 |
DOI:10.11918/202312009 |
分类号:TU391 |
文献标识码:A |
基金项目:国家自然科学基金(3,2);重庆市英才计划(cstc2022ycjh-bgzxm0133); 重庆市研究生科研创新项目(CYS240450) |
|
Mechanical performance and geometric parameter optimization of butterfly-shaped steel plate damper |
XU Lueqin1,2,LIU Jie1,YUE Kefeng1,PAN Ruihua1,FAN Lei1
|
(1.School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2.State Key Laboratory of Mountain Bridge and Tunnel Engineering(Chongqing Jiaotong University), Chongqing 400074, China)
|
Abstract: |
To improve the energy dissipation efficiency and optimize the geometric parameters of a new type of butterfly-shaped steel plate damper, the calculation formulas for the initial stiffness and yield capacity of the new damper were firstly derived. Then, quasi-static tests were conducted on 8 damper specimens to comparatively investigate the failure modes, mechanical parameters, and hysteresis performance. Finally, through numerical simulation analysis of 67 models, the influence of parameters such as the width ratio a/b and height thickness ratio H/t of the energy dissipating ribs, number of energy dissipation ribs n, and number of steel plates N on the mechanical performance of the damper was explored. The results show that the mechanical performance of the new damper is stable with a plump hysteretic curve. The ultimate drift of the damper is greater than 10%, and the maximum equivalent viscous damping ratio exceeds 0.4. The mechanical performance of the damper is proportional to the number of energy dissipation ribs n and the number of steel plates N, which is convenient for standardized design. The initial stiffness, yield strength, and equivalent yield displacement of the damper can well be predicted by theoretical analysis, and the average calculation errors of the theoretical formulas are 14.0%, 8.4% and -10.9%, respectively. By designing the size of the energy dissipation ribs reasonably, the deformation state of full-section yielding can be achieved, resulting in a maximum energy dissipation per unit steel volume of 0.217 J/mm3. When the geometric parameters of the energy dissipation ribs satisfy the requirements of a/b=0.25-0.50 and H/t=20-30, the optimal energy dissipation economy of the new damper can be realized. |
Key words: butterfly-shaped steel plate damper energy dissipation efficiency geometric parameters quasi-static tests numerical simulations |
|
|
|
|