期刊检索

  • 2025年第57卷
  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:张华,张冰,张锁,李鹏,张勇,王路军.煤矿地下水库破碎岩体压实全过程储水性能与演化机制[J].哈尔滨工业大学学报,2025,57(3):81.DOI:10.11918/202311079
ZHANG Hua,ZHANG Bing,ZHANG Suo,LI Peng,ZHANG Yong,WANG Lujun.Water storage performance and evolution mechanism of compacted fractured rock mass in coal mine underground water reservoirs[J].Journal of Harbin Institute of Technology,2025,57(3):81.DOI:10.11918/202311079
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 41次   下载 51 本文二维码信息
码上扫一扫!
分享到: 微信 更多
煤矿地下水库破碎岩体压实全过程储水性能与演化机制
张华1,2,张冰2,3,张锁3,4,李鹏3,张勇3,王路军3
(1.国家能源投资集团有限责任公司,北京 100011;2.山东大学 岩土与结构工程研究中心,济南 250061; 3.煤炭开采水资源保护与利用国家重点实验室,北京 102209;4.神华新街能源有限责任公司,内蒙古 鄂尔多斯 017200)
摘要:
为研究冒落带破碎岩体在上覆岩层压力作用下的动态储水性能及演化机制,采用自主研发的可视化装置,对粗砂岩、砂质泥岩和泥岩的破碎岩样进行了侧限压实试验,获取了压实全过程的孔隙率、碎胀系数和空间演化图像。试验结果表明:破碎岩体压实过程可分为大空隙压实、小空隙压实、破碎后压实和压实强化4个阶段,其中岩体储水空间变化主要出现在第1、3阶段。由于岩体强度及遇水软化特性差异,3类破碎岩体包含了不同的压实过程及分段特征,进而导致砂质泥岩的储水空隙分别是粗砂岩和泥岩的3.75和7.5倍。随着粒径的增大,破碎岩体稳定性提高,粗砂岩、泥岩、砂质泥岩的空隙率分别增大0.20、0.09和0.04。试验结果可采用颗粒力学进行解释,岩体的压实过程本质上是松散岩块之间的滑移、挤压和力链形成,岩性、覆岩压力、颗粒级配的变化导致了3个阶段的发生次序与颗粒体系接触刚度的差异,进而导致岩体储水系数差异。研究成果可为煤矿地下水库储水能力准确评估提供理论支撑。
关键词:  地下水库  破碎岩体  压实过程  覆岩压力  颗粒级配  储水性能
DOI:10.11918/202311079
分类号:TD74
文献标识码:A
基金项目:煤炭开采水资源保护与利用国家重点实验室开放基金(WPUKFJJ2019-07);国家能源集团科技创新项目(GJNY-21-42,GJNY-21-129);神华集团科技创新项目(SHGF-16-19)
Water storage performance and evolution mechanism of compacted fractured rock mass in coal mine underground water reservoirs
ZHANG Hua1,2,ZHANG Bing2,3,ZHANG Suo3,4,LI Peng3,ZHANG Yong3,WANG Lujun3
(1.China Energy Investment Group Co., Ltd., Beijing 100011, China; 2.Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China; 3.State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China; 4.Shenhua Group Xinjie Energy Co., Ltd., Ordos 017200, Inner Mongolia, China)
Abstract:
To study the dynamic water storage performance and evolution mechanism of fractured rock mass in the caving zone under overburden pressure, lateral compaction tests were performed on fractured rock samples of coarse sandstone, sandy mudstone, and mudstone with a self-developed visualization device. The porosity, bulking coefficient, and spatial evolution images of the entire compaction process were obtained. The experimental results indicated that the compaction process of fractured rock mass can be divided into four stages: large gap compaction, small gap compaction, post failure compaction, and compaction strengthening. Among them, the changes in water storage space of rock mass mainly occur in the first and third stages. Due to differences in rock mass strength and water softening characteristics, the three types of fractured rock contain different compaction processes and segmented characteristics, resulting in water storage spaces in sandy mudstone being 3.75 and 7.5 times larger than those in coarse sandstone and mudstone, respectively. As particle size increases, the stability of the fractured rock mass improves, with porosity increaasing by 0.0,0.09, and 0.04 for coarse sandstone, sandy mudstone, and mudstone, respectively. The experimental results can be well explained by particle mechanics, where the compaction process of rock mass is essentially characterized by the formation of slip, compression, and force chains among loose rock blocks. Variations in lithology, overburden pressure, and particle size distribution result in differences in the order and process of occurrence of the three stages, which in turn leads to differences in the water storage characteristic of the rock mass. The research results can provide theoretical support for the accurate evaluation of water storage capacity of underground reservoirs in coal mines.
Key words:  underground reservoirs  broken rock mass  compaction process  overburden pressure  particle grading  water storage characteristics

友情链接LINKS