引用本文: | 崔扬,徐玉滨,许荣庆,沙学军.一个新颖的异构无线网络接入选择算法[J].哈尔滨工业大学学报,2012,44(1):53.DOI:10.11918/j.issn.0367-6234.2012.01.011 |
| CUI Yang,XU Yu-bin,XU Rong-qing,SHA Xue-jun.A novel access network selection algorithm for heterogeneous wireless network[J].Journal of Harbin Institute of Technology,2012,44(1):53.DOI:10.11918/j.issn.0367-6234.2012.01.011 |
|
摘要: |
针对目前已有的异构无线网络接入选择算法缺乏考虑用户之间的竞争性,引入非合作博弈理论对接入选择进行研究.首先考虑了无线网络资源分配方式对用户实际获得数据速率的影响,建立实际数据速率计算公式;然后利用非合作博弈理论描述用户之间自我优化的竞争行为,建立接入选择模型并使用纳什均衡来预测用户的接入选择结果;最后建立适应度函数并利用离散量子粒子群算法求解纳什均衡.通过与遗传算进行比较,得出离散量子粒子群算法具有更好的收敛速度.通过对在不同网络状态下的接入选择结果进行分析,得出本文所提的算法能够适应网络的动态变化,同时该结果也能够合理地解释用户之间以自我优化为目的的竞争行为. |
关键词: 异构无线网络 非合作博弈论 纳什均衡 离散量子粒子群 |
DOI:10.11918/j.issn.0367-6234.2012.01.011 |
分类号:TN925.93 |
基金项目:国家重点基础研究发展计划资助项目(2007CB310601);新一代宽带无线移动通信网科技重大专项资助项目(2009ZX03004-001) |
|
A novel access network selection algorithm for heterogeneous wireless network |
CUI Yang, XU Yu-bin, XU Rong-qing, SHA Xue-jun
|
Communication Research Center,Harbin Institute of Technology,150080 Harbin,China
|
Abstract: |
At present,many heterogeneous wireless access selection algorithms are proposed in published literatures.However,none of them takes competition in resources between users into account.To solve this problem,a wireless network access selection algorithm is presented based on non-cooperative game theory and quantum particle swarm optimization.Firstly,a actual data rate of user is figured out considering way of allocating radio resources;Secondly,a non-cooperative game mode is established to describe this competitive network selection behaviors of user with self-optimization and nash equilibrium is applied to predict the selection results for users;Finally,quantum particle swarm optimization algorithm is employed to find a nash equilibrium.Results show that the proposed algorithm can adapt to dynamic change of network and the competition behavior of user with self-optimization can be rationality interpretated. |
Key words: heterogeneous wireless network non-cooperative game theory nash equilibrium quantum particle swarm optimization |