引用本文: | 陈雯柏,李 卫,张小频.一种低复杂度的近似最大似然MI~/IO检测算法[J].哈尔滨工业大学学报,2012,44(5):140.DOI:10.11918/j.issn.0367-6234.2012.05.028 |
| HEN Wen-bai,LI Wei,ZHANG Xiao-pin.Complexity reduction ML detection algorithm for MIMO system[J].Journal of Harbin Institute of Technology,2012,44(5):140.DOI:10.11918/j.issn.0367-6234.2012.05.028 |
|
摘要: |
为保证无线传感器网络协作式V-BLAST传输中,在较高的检测性能的前提下大大降低算法复杂
度,提出一种低复杂度的近似最大似然检测算法.将传统的V-BLAST算法性能最好一层解的邻域作为候选
判决集合,并以此邻域内每一个符号作为初始值进一步采用传统的V-BLAST算法反馈判决其他层的符号,
采用最大似然准则对候选向量进行判断.该方法有效减小了最大似然检测算法检测向量的数目,降低了算法
的复杂度.仿真结果表明该算法具有良好的综合性能 |
关键词: 最大似然检测 排序连续干扰抵消 垂直分层空时码 多输入多输出 无线传感器网络 |
DOI:10.11918/j.issn.0367-6234.2012.05.028 |
分类号:TN92 |
基金项目:北京市属高校人才强教深化计划项目(PHR201008434;
PHR201106131: PHR201107218 |
|
Complexity reduction ML detection algorithm for MIMO system |
HEN Wen-bai1, LI Wei2, ZHANG Xiao-pin3
|
1.Automation School, Beijing Information Science and Technology University, 100192 Beijing, China;2.China Electronics Engineering Design Institute, 100840 Beijing,China;3.State Key Laboratory of Information
Photonics and Optical Comruunications, Beijing University of Posts & Telecommunications, 100876 Beijing, China
|
Abstract: |
Aiming at reducing the computational complexity greatly and achieving high detection performance
in cooperative MIMO-based WSN, a new complexity reduction ML detection algorithm is proposed. Using con-
ventional V-BLAST algorithm, the best performance layer is found, and the neighborhood is considered to be
candidate set. Regard the every symbol in the candidate set as initial value, we adopt V-BLAST algorithm a-
gain to detect the symbol of other layers. At last, we use the maximum likelihood criterion to judge the candi-
date vector. Because the number of constellation point in the maximum likelihood detection algorithm is re-
duced effectively, the complexity of the algorithm decrease greatly. The simulation results show that the pro-
posed scheme obtains good comprehensive performance |
Key words: maximum likelihood detection OSIC detection V-BLAST MIMO Wireless Sensor Networks |