期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:张梁,徐锦法,夏青元.双目立体视觉的无人机位姿估计算法及验证[J].哈尔滨工业大学学报,2014,46(5):66.DOI:10.11918/j.issn.0367-6234.2014.05.011
ZHANG Liang,XU Jinfa,XIA Qingyuan.Pose estimation algorithm and verification based on binocular stereo vision for unmanned aerial vehicle[J].Journal of Harbin Institute of Technology,2014,46(5):66.DOI:10.11918/j.issn.0367-6234.2014.05.011
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2585次   下载 3004 本文二维码信息
码上扫一扫!
分享到: 微信 更多
双目立体视觉的无人机位姿估计算法及验证
张梁, 徐锦法, 夏青元
(南京航空航天大学 直升机旋翼动力学国家级重点实验室, 210016 南京)
摘要:
针对无人飞行器在未知复杂环境下的导航问题,提出了一种基于双目立体视觉的无人飞行器位置和姿态估计算法.用双目摄像机采集立体图像序列,对图像进行立体校正后使用Harris算法提取特征角点,用NCC算法获取匹配特征点,导出摄像机坐标系下的特征点坐标,得到三维立体特征信息,使用RANSAC算法与L-M迭代算法得到无人飞行器姿态和位置估计值.实验结果表明,基于双目立体视觉的位姿估计算法能适应未知环境变化,计算结果与实际位姿量相比误差小,能满足无人飞行器导航要求,可为无人飞行器的导航实现提供一套新途径.
关键词:  无人飞行器  双目立体视觉  特征点提取与匹配  位姿估计  迭代算法
DOI:10.11918/j.issn.0367-6234.2014.05.011
分类号:V212.4
基金项目:预研项目资助(B2520110008);中央高校基本科研业务费专项资金资助项目;南京航空航天大学研究生创新基地(实验室)开放基金资助项目(KFJJ120101).
Pose estimation algorithm and verification based on binocular stereo vision for unmanned aerial vehicle
ZHANG Liang, XU Jinfa, XIA Qingyuan
(National Key Laboratory of Rotorcraft Aeromechanics, Nanjing University of Aeronautics & Astronautics, 210016 Nanjing, China)
Abstract:
To the navigation of Unmanned Aerial Vehicle(UAV) in the complex unknown environment, an algorithm of position and attitude estimation based on the binocular stereo vision is described in this paper. Stereo vision pairs are taken by the binocular camera. The feature points are detected with the Harris algorism after the stereo vision pairs are rectified and the feature points are matched with NCC algorithm. Then the 3D stereo information of the feature points can be calculated in the camera coordinate system and the position and attitude of UAV are estimated with RANSAC algorithm and L-M iteration algorithm. The result of the experiment shows that the position and attitude estimation algorithm based on binocular stereo vision has strong adaptability of the unknown environment. Compared to the real position and attitude, there is a small error. The algorithm can meet the requirements of UAV navigation. A new way can be provided for the UAV navigation.
Key words:  unmanned aerial vehicle  binocular stereo vision  feature points detection and matching  position and attitude estimation  iterative algorithm

友情链接LINKS