期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:门朝光,何忠政,陈拥军,李香,蒋庆丰.应用混合粒子群优化的检查点全局优化算法[J].哈尔滨工业大学学报,2015,47(5):91.DOI:10.11918/j.issn.0367-6234.2015.05.016
MEN Chaoguang,HE Zhongzheng,CHEN Yongjun,LI Xiang,JIANG Qingfeng.The checkpoint global optimization algorithm based on the mixed particle swarm optimization[J].Journal of Harbin Institute of Technology,2015,47(5):91.DOI:10.11918/j.issn.0367-6234.2015.05.016
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 3564次   下载 1083 本文二维码信息
码上扫一扫!
分享到: 微信 更多
应用混合粒子群优化的检查点全局优化算法
门朝光1,何忠政1,陈拥军2,李香1,蒋庆丰1
(1.哈尔滨工程大学 计算机科学与技术学院,150001 哈尔滨; 2.中国新兴建设开发总公司,100143 北京)
摘要:
针对容错实时系统存在的局部最优检查点间隔为单次故障情况下的最优检查点间隔及局部最优检查点间隔并不是任务集全局最优检查点间隔的缺陷,首先给出检查点间隔全局优化问题的多目标优化模型,然后基于混合粒子群优化算法,提出检查点间隔全局优化算法.该算法通过混合粒子群优化算法的交叉和变异操作,避免算法陷入局部极值的困境,且增强了算法搜索全局近优检查点间隔的能力.实验表明,与其他检查点间隔优化算法相比,本算法可进一步提升系统容错能力.检查点间隔全局优化能在故障多次发生情况下,对任务集的检查点间隔进行全局搜索,以减小检查点设置次数和故障检测次数、高优先级任务抢占时间及故障恢复时间,提高系统可调度性.
关键词:  实时系统  检查点间隔  容错调度  粒子群优化
DOI:10.11918/j.issn.0367-6234.2015.05.016
分类号:TP316
基金项目:国家自然科学基金(8,4).
The checkpoint global optimization algorithm based on the mixed particle swarm optimization
MEN Chaoguang1, HE Zhongzheng1, CHEN Yongjun2, LI Xiang1, JIANG Qingfeng1
(1. College of Computer Science and Technology, Harbin Engineering University, 150001 Harbin, China; 2. China Xinxing Construction & Development General Company, 100143 Beijing, China)
Abstract:
For the task sets in the fault tolerant real time systems, the disadvantages of the local optimal checkpoint interval are under a single fault assumption and also not the global optimal checkpoint interval. To solve these, the multi-objective optimization model for the checkpoint interval global optimization was given first, and then the checkpoint interval global optimization algorithm based on the mixed particle swarm optimization algorithm was proposed. This algorithm avoids the shortcoming of falling into local optimum and enhances the ability of searching the global approximate optimal checkpoint interval by the crossover and mutation operations of the mixed particle swarm optimization algorithm, and further reduces the task worst case response time. The simulation results show that the algorithm can further improve the system fault resilience over the other checkpoint interval optimization algorithms. At the same time, the checkpoint interval global optimization can search the checkpoint intervals of the task set globally when the faults occur many times, by which the number of checkpoint and the number of fault detection can be reduced and the preemption time by the high priority tasks and the fault recovery time can also be decreased, and also the system schedulability can be improved.
Key words:  real-time systems  checkpoint interval  fault tolerant scheduling  particle swarm optimization

友情链接LINKS