期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:李庆,Steven Y.Liang.变分模态分解与稀疏SURE的电子图像噪声抑制[J].哈尔滨工业大学学报,2020,52(4):101.DOI:10.11918/201902021
LI Qing,Steven Y.Liang.Noise suppression for electronic images using variational mode decomposition and sparse SURE algorithm[J].Journal of Harbin Institute of Technology,2020,52(4):101.DOI:10.11918/201902021
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1713次   下载 930 本文二维码信息
码上扫一扫!
分享到: 微信 更多
变分模态分解与稀疏SURE的电子图像噪声抑制
李庆1,Steven Y.Liang1,2
(1.东华大学 机械工程学院,上海 201620; 2.佐治亚理工学院 乔治-伍德拉夫机械工程学院,佐治亚州 亚特兰大 30332-0405)
摘要:
为解决电子微结构图像在摄取、传输或存储的过程中易被外界噪声干扰、图像保真度差的问题,提出了一种变分模态分解与稀疏Stein无偏风险估计(Stein unbiased risk estimator,SURE)相结合的图像噪声抑制方法,以铝合金、双相钢与钛合金Ti6Al4V 3种材料的电子背散射衍射图像为例. 首先,在已采集的电子背散射衍射图像中加入高斯噪声与Speckle斑纹噪声来模拟被干扰图像;然后,利用变分模态分解方法按照频率尺度将含噪模拟图像分解为固有特征成分与高频噪声成分;继而利用Haar小波冗余字典对固有特征成分进行稀疏表示,在一阶可导收缩函数的基础上推导了稀疏Stein无偏风险估计阈值选择的优化目标函数,最后,利用黄金分割搜索法计算得到全局最佳自适应阈值. 结果表明:提出的方法可有效去除外界干扰噪声,提高了图像的峰值信噪比;以铝合金为例,当噪声标准差为30时,提出方法的图像峰值信噪比突破了单一稀疏SURE收缩曲线的最大值,比Neigh-Shrink方法高0.39 dB,比KSVD方法高2.895 dB,比小波阈值去噪算法高3.07 dB.
关键词:  变分模态分解  Haar小波  冗余字典  稀疏Stein无偏风险估计  电子图像
DOI:10.11918/201902021
分类号:TP391.41
文献标识码:A
基金项目:中央高校基本科研业务费专项资金(CUSFDH-D-2017059,BCZD2018013)
Noise suppression for electronic images using variational mode decomposition and sparse SURE algorithm
LI Qing1,Steven Y.Liang1,2
(1.College of Mechanical Engineering, Donghua University, Shanghai 201620, China; 2.George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332-0405 GA, USA)
Abstract:
Electronic images are easily contaminated and blurred during the processes of acquisition, transmission, and storage, and the fidelity of the original images are degraded. To address this issue, a hybrid denoising method based upon variational mode decomposition (VMD) and Stein unbiased risk estimator (SURE) was proposed, taking the electron backscatter diffraction (EBSD) images of Aluminum alloy, dual-phase steel, and Ti6Al4V as examples. To begin with, the clean EBSD images were contaminated by adding Gaussian noise and speckle patterns noise. Then, the noisy image was decomposed into characteristic information component and high-frequency noise components using the Bi-variational mode decomposition (BVMD) algorithm. Next, the generated inherent characteristic component was fed into the Haar wavelet redundant dictionary (HWRD) for sparse representation. Meanwhile, the optimal objective shrinkage function was derived with the function of one-order differentiable shrinkage. Finally, the adaptive threshold was obtained via golden section search (GSS) method. Experimental results show that the proposed method could effectively remove the external interference noise and improve the peak signal-to-noise ratio (PSNR) of the image. Specifically, taking the EBSD image of Aluminum alloy as an example, when the noise standard deviation was 30, the proposed method exceeded the maximum point of single sparse SURE method in terms of PSNR value, which also outperformed the Neigh-Shrink method by 0.39 dB, the K-singular value decomposition (KSVD) method by 2.895 dB, and the soft-wavelet threshold denoising (SWTD) by 3.07 dB.
Key words:  variational mode decomposition  Haar wavelet  redundant dictionary  sparse Stein unbiased risk estimator  electronic images

友情链接LINKS