期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:侯春萍,张倩文,王晓燕,王致芃.轮廓匹配的复杂背景中目标检测算法[J].哈尔滨工业大学学报,2020,52(5):121.DOI:10.11918/201907103
HOU Chunping,ZHANG Qianwen,WANG Xiaoyan,WANG Zhipeng.Object detection in cluttered background based on contour matching[J].Journal of Harbin Institute of Technology,2020,52(5):121.DOI:10.11918/201907103
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1667次   下载 1076 本文二维码信息
码上扫一扫!
分享到: 微信 更多
轮廓匹配的复杂背景中目标检测算法
侯春萍1,张倩文1,王晓燕2,王致芃1
(1.天津大学 电气自动化与信息工程学院,天津 300072; 2.天津大学期刊中心,天津 300072)
摘要:
为解决基于形状的目标检测算法受图像复杂背景的影响,本文提出了一种新的基于轮廓匹配的复杂背景中目标检测方法,算法结合了显著性检测和模板匹配的方法.首先对输入图像在超像素级别进行预处理,应用显著性区域检测方法得到不含复杂背景的区域图像,然后在显著性区域内得到初始边缘图像,对初始边缘图像进行优化处理后利用形状描述子进行轮廓匹配,最后,通过深度优先的搜索策略识别目标的假设位置并进行假设验证来确定最终的目标位置,完成复杂背景图像中的目标检测任务.在ETHZ形状数据集的实验结果证明了本文算法的可行性,根据50%-IoU和20%-IoU标准与其它几种基于形状的目标检测方法进行对比,当误报率为0.3时,算法平均检测率是96%,误报率为0.4时,检测率已经达到99%,如果接受更高误报率时检测率可达到100%,均高于其余几种算法.算法的实验和对比分析结果表明本文方法可以提高检测精度,具有明显的性能优势,为复杂背景中的目标检测提供了新的解决方法.
关键词:  目标检测  复杂背景  显著性检测  形状描述子  轮廓匹配
DOI:10.11918/201907103
分类号:TN911.73
文献标识码:A
基金项目:国家自然科学基金(3,2)
Object detection in cluttered background based on contour matching
HOU Chunping1,ZHANG Qianwen1,WANG Xiaoyan2,WANG Zhipeng1
(1.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; 2.Academic Journal Publishing Center, Tianjin University, Tianjin 300072, China)
Abstract:
To effectively reduce the effects of cluttered background on traditional shape-based object detection methods, a novel object detection algorithm based on contour matching was introduced, which combines the methods of saliency detection and template matching. First, the input image was preprocessed at the super pixel level to obtain the saliency region map without background by saliency feature detection. Then, the edge detection algorithm was applied to get the edge image in the saliency region, and the shape descriptor was used for contour matching after optimizing the edge image. Finally, a depth-first search strategy was applied to identify the hypothetical location of the object and perform hypothesis verification to determine the final location of the object. The experimental result in the ETHZ shape dataset proved the feasibility of this algorithm. Compared with other shape-based methods under the 50%-IoU and 20%-IoU evaluation criteria, according to the data results, the average detection rate of different categories was 96% when the false positive per image (FPPI) was 0.3. The detection rate was 99% when the FPPI was 0.4, and the detection rate would reach 100% if higher FPPI is accepted, which were all higher than the other algorithms. The experimental and comparative analysis results show that the proposed method could improve the detection accuracy and had obvious performance advantages, providing a new solution for object detection in cluttered background.
Key words:  object detection  cluttered background  saliency detection  shape descriptor  contour matching

友情链接LINKS