期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:赵书涛,王二旭,陈秀新,王科登,李小双.声振信号联合1D-CNN的大型电机故障诊断方法[J].哈尔滨工业大学学报,2020,52(9):116.DOI:10.11918/201901221
ZHAO Shutao,WANG Erxu,CHEN Xiuxin,WANG Kedeng,LI Xiaoshuang.Fault diagnosis method for large motor based on sound-vibration signal combined with 1D-CNN[J].Journal of Harbin Institute of Technology,2020,52(9):116.DOI:10.11918/201901221
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1337次   下载 1040 本文二维码信息
码上扫一扫!
分享到: 微信 更多
声振信号联合1D-CNN的大型电机故障诊断方法
赵书涛1,王二旭1,陈秀新2,王科登1,李小双1
(1.华北电力大学 电气与电子工程学院, 河北 保定 071003; 2. 华北电力大学 控制与计算机工程学院, 河北 保定 071003)
摘要:
针对复杂运行环境下大功率电动机故障诊断准确率不高、算法泛化能力差的问题,提出一种声振信号联合一维卷积神经网络(1D-CNN)故障诊断方法. 首先对采集到的声信号采用背景噪声库联合稀疏表示去除噪声,然后将声音信号进行带通滤波(7~20 kHz),叠加低频振动信号(7 kHz内)形成频带更完整的电动机状态表征信息. 再对经过滤波提纯处理后的信息进行重叠式数据扩容,获取1D-CNN训练所需大量数据. 最后将数据样本输入1D-CNN进行学习训练,采用局部均值归一化(local response normalization,LRN)和核函数去相关性改进1D-CNN模型结构,降低抽油机正负半周工况波动对电动机诊断准确性的影响. 诊断结果表明:声振信号联合分析的卷积神经网络故障诊断总体诊断准确率达到了97.75%,泛化能力好,与传统的电动机故障诊断方法相比优势明显.
关键词:  电动机  声振联合  1D-CNN  稀疏表示  数据扩容  故障诊断  泛化能力
DOI:10.11918/201901221
分类号:TM32
文献标识码:A
基金项目:
Fault diagnosis method for large motor based on sound-vibration signal combined with 1D-CNN
ZHAO Shutao1,WANG Erxu1,CHEN Xiuxin2,WANG Kedeng1,LI Xiaoshuang1
(1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003,Hebei, China; 2. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, Hebei, China)
Abstract:
To deal with the problems of low accuracy and poor generalization ability of high-power motor fault diagnosis in complex operation environment, a fault diagnosis method based on sound-vibration signal combined with one-dimensional convolutional neural network (1D-CNN) was proposed. First, a collected sound signal was denoised by the combination of background noise database and sparse representation. Next, the sound signal was filtered by band-pass filter (7-20 kHz), and low frequency vibration signal (within 7 kHz) was superimposed to form more complete motor state representation information in frequency band. Then, the information after filtering and purification was expanded by overlapping data to obtain a large amount of data required for 1D-CNN training. Finally, data samples were input into 1D-CNN for learning and training. Local response normalization (LRN) and kernel function decorrelation were used to improve the structure of 1D-CNN model, which reduced the impact of positive and negative half-cycle fluctuations of pumping unit on motor diagnostic accuracy. Diagnostic results show that the overall diagnostic accuracy of CNN fault diagnosis reached 97.75% based on combined sound and vibration signal analysis, and the generalization ability was good. Compared with traditional motor fault diagnosis methods, the proposed method had obvious advantages.
Key words:  motor  sound-vibration joint  1D-CNN  sparse representation  data expansion  fault diagnosis  generalization ability

友情链接LINKS