期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:周喻,邹世卓,高永涛,郭万红,吴晓灵.动载下层状岩体力学特性试验与数值模拟[J].哈尔滨工业大学学报,2023,55(6):93.DOI:10.11918/202207020
ZHOU Yu,ZOU Shizhuo,GAO Yongtao,GUO Wanhong,WU Xiaoling.Test and numerical simulation for mechanical properties of laminated rock mass under dynamic loading[J].Journal of Harbin Institute of Technology,2023,55(6):93.DOI:10.11918/202207020
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1549次   下载 2143 本文二维码信息
码上扫一扫!
分享到: 微信 更多
动载下层状岩体力学特性试验与数值模拟
周喻1,邹世卓1,高永涛1,郭万红1,2,3,吴晓灵1
(1.金属矿山高效开采与安全教育部重点实验室(北京科技大学),北京 100083; 2.中国水电基础局有限公司,天津 301700;3.中国电建路桥集团有限公司,北京 100048)
摘要:
为研究冲击载荷作用下层状复合岩体的动态力学性能和破裂机制,基于煤单体和白砂岩构成层状软硬煤岩复合体,利用分离式霍普金森压杆试验装置和LS-DYNA有限元分析软件,结合Holmquist-Johnson-Cook(HJC)本构模型,开展不同速率和不同冲击方向下层状软硬煤岩复合体加载试验。结果表明:静态载荷作用下,层状煤岩复合体的强度不会随加载方向变化,动态载荷下层状煤岩复合体的峰值应力和动态增长因子DIF都随冲击速度增加呈线性增大,并且波阻抗匹配效果更好的HS复合体力学性能始终优于SH复合体(S和H分别代表煤单体和白砂岩),随着冲击速度增加这种现象逐渐减弱;层状煤岩复合体耗散能密度与入射能密度呈二次增长关系,分形维数也随着速度增加而不断增大,其中,应力波由硬入软时得到的效果优于由软入硬;层状煤岩复合体破碎程度随冲击速度增加而愈发剧烈,HS复合体破坏程度大于同条件下的SH复合体,白砂岩多呈剪切状破碎,煤单体多呈粉碎锥形破坏;层状煤岩复合体交界处与其他区域强度不一致,造成复合体破坏顺序改变,复合体整体强度规律从小到大依次为煤单体非交界面区域、煤单体交界面区域、白砂岩交界面区域、白砂岩非交界面区域。
关键词:  层状复合体  分离式霍普金森压杆  波阻抗  LS-DYNA  Holmquist-Johnson-Cook  分形理论  能量耗散
DOI:10.11918/202207020
分类号:TD315
文献标识码:A
基金项目:中央高校基本科研业务费专项资金(FRF-IDRY-GD22-005);国家自然科学基金青年基金(51504016)
Test and numerical simulation for mechanical properties of laminated rock mass under dynamic loading
ZHOU Yu1,ZOU Shizhuo1,GAO Yongtao1,GUO Wanhong1,2,3,WU Xiaoling1
(1.Key Laboratory for Efficient Mining and Safety of Metal Mine (University of Science and Technology Beijing), Ministry of Education, Beijing 100083, China; 2.Sinohydro Foundation Engineering Co., Ltd., Tianjin 301700, China; 3.PowerChina Road Bridge Group Co., Ltd., Beijing 100048, China)
Abstract:
To study the dynamic mechanical properties and rupture mechanism of laminated composite rock mass under the action of impact loading, we carried out loading tests of laminated soft and hard coal rock composites consisting of coal monomer and white sandstone under different rates and impact directions by using the split Hopkinson pressure bar (SHPB) device and LS-DYNA finite element analysis software combined with Holmquist-Johnson-Cook (HJC) constitutive model. Results show that the strength of the laminated coal-rock composite did not change with the loading direction under static loading. The peak stress and dynamic increase factor (DIF) of the laminated coal-rock composite under dynamic loading increased linearly with the impact velocity. The mechanical properties of HS (H and S represent white sandstone and coal monomer respectively) composite with better wave impedance matching were always better than those of SH composite, and this phenomenon gradually decreased with the increase in the impact velocity. The dissipation energy density and incident energy density of the laminated coal-rock composite showed a quadratic growth relationship. The fractal dimension increased with the velocity, and the effect obtained when the stress wave transferred from hard into soft was better than that from soft into hard. The degree of fragmentation of the laminated coal-rock composite became more and more intense with the increase in the impact velocity, the degree of destruction of HS composite was greater than that of SH composite under the same conditions, the white sandstone presented more shear-like fragmentation, and the coal monomer presented more crushed conical destruction. The strength at the interface of the laminated coal-rock composite was not consistent with that in other regions, resulting in a change in the order of destruction of the composite. The overall strength law of the composite from small to large was: coal monomer non-interface region, coal monomer interface region, white sandstone interface region, and white sandstone non-interface region.
Key words:  laminated composite  split Hopkinson pressure bar  wave impedance  LS-DYNA  Holmquist-Johnson-Cook  fractal theory  energy dissipation

友情链接LINKS