期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:赵珊鹏,张海喜,张友鹏,王思华,朱子恒,张宸瑞.基于流固耦合的大风区接触网正馈线舞动机制分析[J].哈尔滨工业大学学报,2023,55(10):130.DOI:10.11918/202209025
ZHAO Shanpeng,ZHANG Haixi,ZHANG Youpeng,WANG Sihua,ZHU Ziheng,ZHANG Chenrui.Analysis of catenary positive feeder galloping mechanism in strong wind section based on fluid-structure interaction[J].Journal of Harbin Institute of Technology,2023,55(10):130.DOI:10.11918/202209025
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1147次   下载 1184 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于流固耦合的大风区接触网正馈线舞动机制分析
赵珊鹏1,2,张海喜1,3,张友鹏1,王思华1,朱子恒1,张宸瑞4
(1.兰州交通大学 自动化与电气工程学院,兰州 730070;2.甘肃省轨道交通电气自动化工程实验室(兰州交通大学), 兰州 730070;3.中国能源建设集团甘肃省电力设计院有限公司,兰州 730050; 4.国网新疆电力有限公司乌鲁木齐供电公司,乌鲁木齐 830000)
摘要:
为进一步明确挡风墙尾流影响下接触网正馈线的舞动机制,以兰新高铁接触网正馈线为研究对象,基于空气动力学理论,建立了接触网正馈线风致振动响应的分析模型。采用流固耦合方法对不同固有频率比和自由度的二维接触网正馈线模型进行了时程分析。研究结果表明:频率比和自由度对接触网正馈线的舞动幅值存在较大的影响。频率比越小,接触网正馈线的振幅受风速影响越大,接触网正馈线发生舞动时的风速范围更广。垂直单自由度系统中接触网正馈线的舞动幅值大于垂直-水平两自由度系统中接触网正馈线的舞动幅值,表明接触网正馈线的水平振动对垂直振动存在一定限制作用。当接触网正馈线在挡风墙尾流影响下发生振动时,正馈线的风攻角不断发生变化。迎风角较大时,正馈线垂直方向气动力幅值增大,更易引起正馈线垂直方向的大幅舞动,并将接触网正馈线的舞动模式归属为无覆冰条件下的Den Hartog舞动。研究结果进一步明确了大风区段无覆冰条件下接触网正馈线的舞动机制,为接触网正馈线舞动的防治提供一定的理论支撑。
关键词:  兰新高铁  正馈线  流固耦合  舞动幅值  数值分析
DOI:10.11918/202209025
分类号:TM922.3
文献标识码:A
基金项目:国家自然科学基金(51867013);甘肃省自然科学基金(22JR5RA359);兰州交通大学天佑创新团队计划(TY202010)
Analysis of catenary positive feeder galloping mechanism in strong wind section based on fluid-structure interaction
ZHAO Shanpeng1,2,ZHANG Haixi1,3,ZHANG Youpeng1,WANG Sihua1,ZHU Ziheng1,ZHANG Chenrui4
(1.School of Automatic & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2.Rail Transit Electrical Automation Engineering Laboratory of Gansu Province (Lanzhou Jiaotong University), Lanzhou 730070, China; 3.China Energy Engineering Group Gansu Electric Power Design Institute Co. Ltd., Lanzhou 730050, China; 4.Urumqi Power Supply Company, State Grid Xinjiang Electric Power Company, Urumqi 830000, China)
Abstract:
To better understand the mechanism of impact of windbreak wall wake on the galloping of catenary positive feeder, this study establishes an analysis model for wind-induced vibration response of positive feeder in light of the aerodynamic theory, focusing on the positive feeder of LanzhouUrumqi high speed railway. The fluid-structure interaction method is used to analyze the time history of two-dimensional models with different natural freguency rations and degrees of freedom. The results show that both the degree of freedom and the frequency ratio significantly impact the galloping amplitude of the positive feeder. A lower frequency ratio amplifies the impact of wind speed on the amplitude of the positive feeder and extends the range of wind speeds triggering the galloping of the positive feeder. The galloping amplitude of the positive feeder in the vertical single-degree-of-freedom system is greater than that in the vertical-horizontal two-degree-of-freedom system, indicating that the horizontal vibration of the positive feeder has a certain limiting effect on the vertical vibration. When the positive feeder vibrates in the wake of windbreak wall, the windward angle of the positive feeder is constantly changing. A larger windward angle is more likely to induce substantial galloping of the positive feeder. The galloping mode of the positive feeder of the catenary in the strong wind section is determined as Den Hartog galloping without icing. The research results offer a deeper understanding of the galloping mechanism of the positive feeder under the condition without icing in the strong wind section, providing theoretical insights into mitigating and controlling the galloping of the positive feeder of the catenary.
Key words:  LanzhouUrumqi high speed railway  positive feeder  fluid-structure interaction  galloping amplitude  numerical analysis

友情链接LINKS