期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:刘铁新,董自岩,郭怡宁.鹈鹕优化算法在岩体结构面分组中的应用[J].哈尔滨工业大学学报,2024,56(3):117.DOI:10.11918/202304025
LIU Tiexin,DONG Ziyan,GUO Yining.Application of pelican optimization algorithm to clustering analysis of rock mass structural plane[J].Journal of Harbin Institute of Technology,2024,56(3):117.DOI:10.11918/202304025
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 3344次   下载 3353 本文二维码信息
码上扫一扫!
分享到: 微信 更多
鹈鹕优化算法在岩体结构面分组中的应用
刘铁新,董自岩,郭怡宁
(大连海事大学 交通运输工程学院,辽宁 大连 116600)
摘要:
结构面广泛分布于岩体之中,难以逐一进行分析。现有研究方法存在对初始信息敏感,分组结果可靠性差,以及难以准确对产状相近的结构面进行分组等不足。针对上述问题,提出了一种基于鹈鹕优化算法(POA)的岩体结构面分组方法。首先,利用POA算法全局寻优初始聚类中心,结合模糊C均值算法(FCM)将结构面产状数据进行完全分组。其次,利用蒙特卡罗模拟技术,生成符合Fisher分布的产状数据。最后,基于正交设计,对比传统FCM算法,以识别错误率为指标,研究了新算法在不同结构面数量、结构面组数、聚类中心、离散度情况下分组精度的变化规律。结果表明:聚类中心对分组精度具有显著影响;所提方法能对产状极点边界不清晰的结构面数据进行有效分组,可有效提高分组精度和分组结果的可靠性。以大连某水库边坡结构面数据为基础,对其进行分组处理,验证了新方法的工程实用性。研究结果可以为结构面三维网络计算机模拟和岩体工程稳定性分析提供依据。
关键词:  岩体力学  鹈鹕优化算法  模糊C均值算法  结构面分组  正交设计
DOI:10.11918/202304025
分类号:TU452
文献标识码:A
基金项目:国家自然科学基金(U19A8,4)
Application of pelican optimization algorithm to clustering analysis of rock mass structural plane
LIU Tiexin,DONG Ziyan,GUO Yining
(College of Transportation Engineering, Dalian Maritime University, Dalian 116600, Liaoning, China)
Abstract:
The discontinuities are widely distributed in the rock mass and are difficult to analyze one by one. Therefore, it is of great engineering value and scientific significance to carry out the dominant grouping of the discontinuities. The existing research methods are sensitive to the initial information, the grouping results are not reliable, and it is difficult to accurately group the discontinuities with similar discontinuity orientations. To address these problems, this paper proposes a method for grouping discontinuities in rock masses based on the pelican optimization algorithm (POA). The POA algorithm is used to globally find the optimal initial clustering center and combine with the fuzzy C-mean algorithm (FCM) to fully group the discontinuity orientations. A Monte Carlo simulation technique is used to generate discontinuity orientations that conform to the Fisher distribution. Based on the orthogonal design, using the recognition error rate as the index, the new algorithm was compared with the traditional FCM algorithm, and the variation regulation of grouping accuracy was investigated under different number of discontinuities, number of discontinuities groups, clustering centers and dispersion degree. The results indicate that the cluster centers have a significant impact on grouping accuracy, and the proposed method is capable of effectively grouping structural data with unclear boundary of geological features, thereby improving the accuracy and reliability of the grouping results. Based on the data of the slope structural plane of a reservoir in Dalian, it is grouped and processed to verify the engineering practicability of the new method. This study can provide a basis for the three-dimensional network computer simulation of structural plane and the stability analysis of rock mass engineering.
Key words:  rock mass mechanics  POA  FCM  structural plane grouping  orthogonal design

友情链接LINKS