期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:黄鹤,熊武,杨澜,吴琨,王会峰,高涛.飞蛾扑火优化的尺度比例感知空间长期跟踪器[J].哈尔滨工业大学学报,2024,56(5):130.DOI:10.11918/202208037
HUANG He,XIONG Wu,YANG Lan,WU Kun,WANG Huifeng,GAO Tao.A scale-aware spatial long-term tracker based on moth-flame optimization[J].Journal of Harbin Institute of Technology,2024,56(5):130.DOI:10.11918/202208037
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2005次   下载 2299 本文二维码信息
码上扫一扫!
分享到: 微信 更多
飞蛾扑火优化的尺度比例感知空间长期跟踪器
黄鹤1,2,熊武1,杨澜3,吴琨1,王会峰1,高涛1
(1.长安大学 电子与控制工程学院,西安 710064;2.西安市智慧高速公路信息融合与控制重点实验室(长安大学),西安 710064;3.长安大学 信息工程学院,西安 710064)
摘要:
针对无人机长期跟踪过程中尺度变换导致目标丢失和跟踪精度低的问题,提出了一种基于飞蛾扑火优化(moth-flame optimization,MFO)的尺度比例感知空间长期跟踪器。首先,设计了高斯初始化以代替飞蛾扑火优化算法的随机初始化策略,降低优化算法在跟踪过程中的计算复杂度,减少算力浪费;其次,结合快速梯度直方图特征,构建了改进的飞蛾扑火优化跟踪器;然后,为了解决无人机航拍长期跟踪中目标尺度变化的问题,设计了一种自适应尺度变换的判别尺度空间跟踪(discriminative scale space tracking,DSST)算法,进一步提出了一种尺度比例感知空间跟踪器,解决了尺度滤波器中因长宽比固定而导致的跟踪漂移;同时,分析了滤波器响应峰值在各背景下的变化情况,提出了一种能反映环境变化下跟踪置信度的指标,并通过置信度将MFO优化跟踪框架与尺度比例感知空间跟踪器相结合,解决了尺度变化与长期跟踪目标丢失的问题;最后,在无人机长期跟踪数据集上开展了性能验证。结果表明:提出的算法可有效防止漂移现象的发生,提升跟踪效率;与目前跟踪领域中12种同类文献算法进行对比可知,提出的算法精度较高,满足实时性,能够有效解决无人机长期跟踪下的尺度变化及目标丢失等问题。
关键词:  无人机  飞蛾扑火优化  DSST跟踪算法  相关滤波  长期跟踪
DOI:10.11918/202208037
分类号:TP391
文献标识码:A
基金项目:国家重点研发计划(2021YFB2501200);国家自然科学基金面上项目(4,9);陕西省重点研发计划(2021SF-483);陕西省自然科学基础研究计划(2021JM-184);西安市智慧高速公路信息融合与控制重点实验室(长安大学)开放基金(300102321502);中央高校基本科研业务费资助(300102324501)
A scale-aware spatial long-term tracker based on moth-flame optimization
HUANG He1,2,XIONG Wu1,YANG Lan3,WU Kun1,WANG Huifeng1,GAO Tao1
(1.School of Electronics and Control Engineering, Chang an University, Xi an 710064, China; 2.Xi an Key Laboratory of Intelligent Expressway Information Fusion and Control (Chang an University), Xi an 710064, China; 3.School of Information Engineering, Chang an University, Xi an 710064, China)
Abstract:
In view of the problems of target loss and low tracking accuracy due to scale transformation during long-term UAV tracking, a scale-aware spatial tracker based on moth-flame optimization (MFO) was proposed. First, the Gaussian initialization was used to replace the random initialization strategy of the original moth-flame optimization algorithm, so as to reduce the high computational complexity and waste of computing power of the optimization algorithm in the tracking problem. Second, on the basis of the characteristics of fast gradient histogram, an improved moth-flame optimization tracker was constructed. Then, considering the problem of target scale change under the long-term tracking of UAV aerial photography, a discriminative scale space tracking (DSST) algorithm combined with adaptive scale transformation was designed. A scale-aware spatial tracker was further proposed to solve the problem of tracking drift caused by the fixed aspect ratio of the scale filter. In addition, the variation of the filter response peak value under different backgrounds was analyzed, and an index that can reflect the tracking confidence under environmental changes was proposed. The moth-flame optimization tracking framework was combined with the scale-aware spatial tracker through confidence, which can solve the problems of scale change and target loss in long-term tracking. Finally, the performance of the algorithm was verified on the UAV long-term tracking dataset. Results show that the proposed algorithm can effectively prevent the occurrence of drift and improve the tracking efficiency. Compared with 12 similar algorithms in the tracking field, the proposed algorithm can effectively solve the scale change and the target loss of the long-term UAV tracking, and meet the requirement of real-time with high accuracy.
Key words:  UAV  moth-flame optimization  DSST algorithm  correlation filtering  long-term tracking

友情链接LINKS