引用本文: | 王目凯,陈照波,焦映厚,吕文香.敷设约束阻尼薄壁圆柱壳的振动特性[J].哈尔滨工业大学学报,2017,49(1):72.DOI:10.11918/j.issn.0367-6234.2017.01.010 |
| WANG Mukai,CHEN Zhaobo,JIAO Yinghou,Lü Wenxiang.Vibration characteristics of thin cylindrical shell with constrained layer damping[J].Journal of Harbin Institute of Technology,2017,49(1):72.DOI:10.11918/j.issn.0367-6234.2017.01.010 |
|
摘要: |
为分析约束阻尼对薄壁圆柱壳振动特性的影响,应用哈密顿原理结合瑞利-李兹法求解敷设约束阻尼圆柱壳的动力学方程. 得出自由振动时的固有频率、损耗因子的计算公式;应用模态叠加法计算圆柱壳上任意一点的频率响应. 提出能量耗散系数,将其作为阻尼效果的评价标准,用来分析约束阻尼结构各参数对阻尼效果的影响,并与损耗因子进行比较. 结果表明:约束阻尼可以有效地抑制薄壁圆柱壳振动的传递;在指定频带范围内能量耗散系数能够作为阻尼效果的评价标准;阻尼材料阻尼系数、约束层弹性模量、约束层厚度、阻尼层厚度均会对阻尼效果产生影响.
|
关键词: 约束阻尼 薄壁圆柱壳 能量耗散系数 阻尼效果 模态叠加法 哈密顿原理 瑞利-李兹法 |
DOI:10.11918/j.issn.0367-6234.2017.01.010 |
分类号:TB535 |
文献标识码:A |
基金项目:国家自然科学基金(11372083) |
|
Vibration characteristics of thin cylindrical shell with constrained layer damping |
WANG Mukai1,CHEN Zhaobo1,JIAO Yinghou1,Lü Wenxiang2
|
(1.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; 2.School of Maritime, Shandong Jiaotong University, Jinan 264200, China)
|
Abstract: |
To know the vibration characteristics of thin cylindrical shell with constrained layer damping, Hamilton principle with Rayleigh-Ritz method is used to solve the dynamic equation. Based on this, natural frequencies and loss factors of free vibration are analyzed. Modal Superposition method is used to calculate the formulas of frequency response on any points in the shell. In addition, based on frequency response, power dissipation coefficient is proposed. The power dissipation coefficient and loss factors are used respectively as constrained layer damping effect evaluation criteria and to analyze the influence of constrained layer damping structure parameters on the damping effect. Numerical results show that the constrained layer damping can effectively inhibit vibration transmission of thin cylindrical shell. The power dissipation coefficient can be used as damping effect evaluation criteria in the specified frequency band. The coefficient of viscoelastic damping material, elastic modulus of constrained layer, thickness of constrained layer and thickness of damping layer can affect the damping effect.
|
Key words: constrained layer damping thin cylindrical shell power dissipation coefficient damping effect modal superposition method Hamilton principle Rayleigh-Ritz method |