期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:刘晓东,刘朦月,陈寅生,朱文炜.EEMD-PE与M-RVM相结合的轴承故障诊断方法[J].哈尔滨工业大学学报,2017,49(9):122.DOI:10.11918/j.issn.0367-6234.201604066
LIU Xiaodong,LIU Mengyue,CHEN Yinsheng,ZHU Wenwei.Rolling bearing fault diagnosis based on EEMD-PE coupled with M-RVM[J].Journal of Harbin Institute of Technology,2017,49(9):122.DOI:10.11918/j.issn.0367-6234.201604066
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2457次   下载 955 本文二维码信息
码上扫一扫!
分享到: 微信 更多
EEMD-PE与M-RVM相结合的轴承故障诊断方法
刘晓东,刘朦月,陈寅生,朱文炜
(哈尔滨工业大学 电气工程及自动化学院, 哈尔滨 150001)
摘要:
滚动轴承振动信号中包含了大量轴承运行状态信息,但是由于振动信号具有非线性和非平稳性的特点,难以充分提取振动信号中的故障特征,导致现有基于模式识别的轴承故障诊断方法的故障识别准确率较低.为了提高滚动轴承故障识别的准确率,提出了一种基于集合经验模态分解-排列熵(EEMD-PE)特征提取与多分类相关向量机(M-RVM)相结合的轴承故障诊断方法.首先,该方法利用EEMD对非线性和非平稳信号的自适应分解能力,将轴承故障信号分解为一组包含故障特征的本征模态函数(IMFs).然后,利用排列熵提取由EEMD分解得到的IMFs中的故障特征,并组成特征向量.最后,采用EEMD-PE对不同故障状态下的训练样本集进行特征提取,组成特征向量集对M-RVM分类器进行建模,以概率输出的形式实现对滚动轴承的故障诊断.实验结果表明:EEMD-PE特征提取方法能够对滚动轴承振动信号的故障特征进行有效提取,M-RVM能够对故障滚动轴承振动信号包含的故障特征进行识别.与现有轴承故障诊断方法相比较,所提出的方法能够提高故障识别准确率,达到99.58%.
关键词:  滚动轴承  故障诊断  EEMD  PE  M-RVM
DOI:10.11918/j.issn.0367-6234.201604066
分类号:TH133.33
文献标识码:A
基金项目:
Rolling bearing fault diagnosis based on EEMD-PE coupled with M-RVM
LIU Xiaodong,LIU Mengyue,CHEN Yinsheng,ZHU Wenwei
(School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)
Abstract:
Vibration signals of faulty rolling bearing contain a large amount of information about the bearing operating status. However, it is difficult to extract the fault features completely because of its characteristics of nonlinearity and non-stationarity, which leads to a problem of relatively low fault identification rate of current fault diagnosis methods based on pattern recognition. In order to improve the accuracy of rolling bearing fault diagnosis, this paper proposes a fault diagnosis method of rolling bearing, which adopts ensemble empirical mode decomposition and permutation entropy (EEMD-PE) to extract the fault features coupled with multiclass relevance vector machine (M-RVM) to achieve the goal of fault classification. Firstly, the vibration signal of faulty rolling bearing decomposes into a series of intrinsic mode functions (IMFs) by using the adaptive decomposition ability of nonlinear and non-stationary signals. Afterwards, the fault features contained in IMFs are extracted by permutation entropy, and the features constitute the feauture vector. Finally, EEMD-PE method is used to extract the fault feaures of training sample set under different fault conditions. The M-RVM classifier is trained by using feature vector set, and the multiple fault identification is implemented in the form of probability output. The experimental results show that EEMD-PE feature extraction method can effectively extract fault features of rolling bearing vibration signal, M-RVM can identify the fault feature contained in rolling bearing vibration signals. Compared with the existing bearing fault diagnosis methods, this method can improve the fault identification rate reaching up to 99.58%.
Key words:  rolling bearing  fault diagnosis  EEMD  PE  M-RVM

友情链接LINKS