期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:赵金玲,李杰,党伟康.热惰性指标对围护结构热稳定性量化作用机制[J].哈尔滨工业大学学报,2018,50(10):182.DOI:10.11918/j.issn.0367-6234.201711157
ZHAO Jinling,LI Jie,DANG Weikang.Quantitative mechanism of thermal inertia index on thermal stability of building envelope[J].Journal of Harbin Institute of Technology,2018,50(10):182.DOI:10.11918/j.issn.0367-6234.201711157
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1124次   下载 853 本文二维码信息
码上扫一扫!
分享到: 微信 更多
热惰性指标对围护结构热稳定性量化作用机制
赵金玲1,李杰1,党伟康2
(1.大连理工大学 土木工程学院,大连 116023; 2.中国电力工程顾问集团华北电力设计院有限公司,北京 100084)
摘要:
热惰性指标D是基于谐波分析法的建筑热稳定模型中的关键参数,为揭示热惰性指标对围护结构内热流波动的作用机制,首先基于对周期性非稳态热作用下围护结构传热过程的理论分析和求解,给出了热惰性指标与围护结构内温度波衰减及温度波数量的关系式,然后利用数值模拟方法分析了热惰性指标对围护结构内温度波衰减和延迟的影响,最后分析了热惰性指标对剧烈波动层厚度、内表面蓄热系数、多层围护结构的衰减倍数及延迟时间等热稳定性能参数计算的关键影响.研究表明:热惰性指标与围护结构内温度波衰减以及温度波数量存在定量关系式;对于相同形式的围护结构,D越大,衰减倍数及延迟时间越大,围护结构内温度波数量越多,热稳定性能越好;对于不同形式的多层围护结构,D越大,表明延迟时间越长,而衰减倍数的大小还与材料层的排顺有关,外保温比内保温围护结构能获得更大的衰减倍数;利用D=1确定温度剧烈波动层厚度为围护结构蓄热设计提供了新思路;内表面蓄热系数的计算主要与剧烈波动层内的热工参数有关.
关键词:  热惰性指标  围护结构  热稳定  温度波  衰减  延迟
DOI:10.11918/j.issn.0367-6234.201711157
分类号:TU11119
文献标识码:A
基金项目:国家自然科学基金(51408100)
Quantitative mechanism of thermal inertia index on thermal stability of building envelope
ZHAO Jinling1,LI Jie1,DANG Weikang2
(1.School of Civil Engineering, Dalian University of Technology, Dalian 116023, China; 2.North China Power Engineering Co., Ltd of China Power Engineering Consulting Group, Beijing 100084, China)
Abstract:
The thermal inertia index D is the key parameter in the thermal stability model of the building based on the harmonic analysis method. To reveal the effect mechanism of D on the heat flow fluctuation in the enclosure structure, the relationship between D and the attenuation and the number of temperature waves was given, based on the theoretical analysis and solution of the heat transfer process of the building envelope under the periodic unsteady thermal action. Then the effect of D on the attenuation and delay of temperature wave in the enclosure structure is analyzed by numerical simulation method. Finally, the key influence of D on the calculation of thermal stability parameters was analyzed, such as violent fluctuating layer thickness, the thermal storage coefficient of inner surface, the attenuation multiplier and the delay time. The results show that there is a quantitative relationship between D and the attenuation of temperature wave and the number of temperature waves in the enclosure. For the same type of enclosure structure, when D value increases, the attenuation and the delay time become greater. As the number of temperature waves in the enclosure structure increases, and the thermal stability become better. For different forms of multilayer enclosure structure, the larger the D value is, the longer the delay time is, and the attenuation ratio is related to the arrangement of the material layer, and the external insulation can obtain more attenuation multiple. Using D=1 to determine the thickness of violent fluctuating layer provides a new idea for thermal storage design of building envelope. The calculation of the thermal storage coefficient of inner surface is mainly related to the thickness of violent fluctuating layer. The theoretical basis for the improvement of the physical meaning of the thermal inertia index from the qualitative description to the quantitative description is provided.
Key words:  thermal inertia index  building envelope  thermal stability  temperature wave  attenuation  delay

友情链接LINKS