期刊检索

  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 冷劲松 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:张茂花,孙彦宇.干湿循环作用下纳米混凝土的抗Cl-渗透性能[J].哈尔滨工业大学学报,2019,51(8):167-176.DOI:10.11918/j.issn.0367-6234.201904097
ZHANG Maohua,SUN Yanyu.Cl- penetration resistance of concrete with nano-particles under the action of dry-wet cycle[J].Journal of Harbin Institute of Technology,2019,51(8):167-176.DOI:10.11918/j.issn.0367-6234.201904097
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 125次   下载 225 本文二维码信息
码上扫一扫!
分享到: 微信 更多
干湿循环作用下纳米混凝土的抗Cl-渗透性能
张茂花,孙彦宇
(东北林业大学 土木工程学院,哈尔滨 150040)
摘要:
干湿循环和氯离子(Cl-)渗透是影响海工混凝土耐久性的主要因素,为研究不同环境条件及掺加纳米颗粒对海工混凝土抗Cl-渗透性能的影响,分别将不同掺量的纳米SiO2和纳米Fe3O4掺入到普通混凝土中,通过干湿循环和全浸泡两种方式进行Cl-渗透对比试验,采用化学滴定法测得混凝土内不同深度的Cl-含量.试验结果表明:干湿循环作用加速了Cl-向混凝土内的迁移,并使混凝土的总、自由、结合Cl-含量及Cl-结合能力均高于相同龄期的全浸泡试件,且随着干湿循环次数的增加两者Cl-含量的差值越来越大;两种环境条件下,纳米混凝土的总、自由Cl-含量均低于普通混凝土,而结合Cl-含量和Cl-结合能力均高于普通混凝土,两种纳米颗粒的最佳掺量都是2%,且纳米SiO2的改善效果优于纳米Fe3O4.纳米颗粒的表面效应和填充效应改善了混凝土的孔结构,造成Cl-在混凝土内迁移困难;不同掺量的纳米SiO2和纳米Fe3O4可以不同程度的提高水化产物对Cl-的化学结合和物理吸附能力,减少混凝土内的自由Cl-含量,从而提高海工混凝土的抗Cl-渗透性能.本文研究成果可为海工混凝土的耐久性设计提供参考.
关键词:  海工混凝土  纳米颗粒  干湿循环  全浸泡  Cl-渗透  耐久性
DOI:10.11918/j.issn.0367-6234.201904097
分类号:TU528
文献标识码:A
基金项目:国家自然科学基金(51878130);黑龙江省博士后科研启动金项目(LHB-Q13001);中央高校基本科研业务费专项基金(2013CBQ02)
Cl- penetration resistance of concrete with nano-particles under the action of dry-wet cycle
ZHANG Maohua,SUN Yanyu
(School of Civil Engineering, Northeast Forestry University, Harbin 150040, China)
Abstract:
Dry-wet cycle and chloride ion (Cl-) penetration are the main factors affecting the durability of marine concrete. To study the influences of different environmental conditions and the addition of nano-particles on the Cl-penetration resistance of marine concrete, nano-SiO2 and nano-Fe3O4 were respectively added into ordinary concrete with different amounts, and the contrast test of Cl-penetration was carried out by dry-wet cycle and full immersion, then the Cl- content in concrete at different depths by chemical titration was measured. The test results show that dry-wet cycle accelerates the Cl-migration to the inner of concrete, which makes that the total Cl- content, free Cl- content and bound Cl- content in concrete and the Cl- binding capacity of concrete under dry-wet circle condition are all higher than those under full immersion condition at the same age, and the difference in Cl- content between the two environmental conditions becomes more and more larger with the increasing number of dry-wet cycles. Under the two environmental conditions, the total Cl- content and free Cl- content in concrete with nano-particles are all lower than those in ordinary concrete, but the bound Cl- content and the Cl- binding capacity are all higher than those in ordinary concrete. The optimum amount of two nano-particles in marine concrete is 2%, and the Cl-penetration resistance of concrete with nano-SiO2 is superior to that of concrete with the same amount of nano-Fe3O4. The surface effect and filling effect of nano-particles improve the pore structure of concrete, resulting in the Cl-migration in concrete difficult. Both nano-SiO2 and nano-Fe3O4 with different amounts can enhance the chemical binding capacity and physical adsorption capacity of hydrated products to Cl- in different extent, which can reduce the free Cl- content in concrete to improve the Cl- penetration resistance of marine concrete. This study can provide references for the durability design of marine concrete.
Key words:  marine concrete  nano-particles  dry-wet cycle  full immersion  Cl-penetration  durability

友情链接LINKS