期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:宋占国,陈红,黄卫.结合灰聚簇与Fisher变换的城市快速路交通状态判别[J].哈尔滨工业大学学报,2019,51(9):22.DOI:10.11918/j.issn.0367-6234.201805083
SONG Zhanguo,CHEN Hong,HUANG Wei.Traffic state identification for urban expressway: a combination of gray clustering and fisher transform model[J].Journal of Harbin Institute of Technology,2019,51(9):22.DOI:10.11918/j.issn.0367-6234.201805083
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1000次   下载 985 本文二维码信息
码上扫一扫!
分享到: 微信 更多
结合灰聚簇与Fisher变换的城市快速路交通状态判别
宋占国1,陈红2,黄卫1
(1.东南大学 智能运输系统研究中心,南京 210096;2.长安大学 公路学院,西安 710061 )
摘要:
为提高少数据下的城市快速路交通流状态类型判别精度,提出一种结合灰聚簇与Fisher变换(GC-Fisher)的组合方法. 选择交通量Q、速度v、占有率O作为基础参数,首先经灰聚簇理论将基础参数数据聚簇为4类,其次对分类后的数据构建训练集,训练GC-Fisher模型,获取每一种交通流状态类型的Fisher变换方式及判别函数,最后选择结合K均值与多分类支持向量机(K-SVM)的组合方法进行比较. 结果表明:在数据量较少条件下对交通流状态类型进行判别,GC-Fisher模型判别率为92%,优于K-SVM模型的判别率69%,GC-Fisher组合方法在少数据下能够更好地提高交通流状态类型的判别效果.
关键词:  交通工程  交通状态判别  灰聚簇  Fisher变换  性能分析
DOI:10.11918/j.issn.0367-6234.201805083
分类号:U491
文献标识码:A
基金项目:国家自然科学基金 (71701046); 江苏省研究生科研与实践创新计划(KYCX18_0151)
Traffic state identification for urban expressway: a combination of gray clustering and fisher transform model
SONG Zhanguo1,CHEN Hong2,HUANG Wei1
(1. Intelligent Transport System Research Center, Southeast University, Nanjing 210096, China; 2. School of Highway, Chang’an University, Xi’an 710061, China)
Abstract:
To improve the accuracy of urban traffic flow state identification under limited data condition, a model combining grey clustering and fisher transform (GC-fisher model) is proposed. First, the parameters of traffic volume (Q), speed (v), and occupation (O) were divided into four categories according to the grey clustering theory. Then training dataset was established by using the classified data, and the fisher transform and discriminant functions of each traffic flow state were obtained by using the GC-Fisher model. Afterwards, the combination of K-means and multi-class support vector machine (K-SVM) model was selected as the comparison model. Results of model discriminant rate and the case study show that the GC-fisher model outperformed K-SVM model under limited data condition: the discriminant rate was 92% by using GC-fisher, while the rate was 69% by using K-SVM. The GC-Fisher model can improve the discrimination accuracy of traffic flow state under limited data condition.
Key words:  traffic engineering  traffic state identification  gray clustering  fisher transform  performance analysis

友情链接LINKS