期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:郝宝新,周志成,曲广吉,李东泽.桁架结构拓扑优化的半定规划建模与求解[J].哈尔滨工业大学学报,2019,51(10):11.DOI:10.11918/j.issn.0367-6234.201901070
HAO Baoxin,ZHOU Zhicheng,QU Guangji,LI Dongze.Modeling and solving of truss topology optimization problems based on semidefinite programming[J].Journal of Harbin Institute of Technology,2019,51(10):11.DOI:10.11918/j.issn.0367-6234.201901070
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1137次   下载 994 本文二维码信息
码上扫一扫!
分享到: 微信 更多
桁架结构拓扑优化的半定规划建模与求解
郝宝新1,周志成2,曲广吉1,李东泽1
(1.中国空间技术研究院 通信卫星事业部, 北京 100094; 2.中国空间技术研究院, 北京 100094)
摘要:
为克服桁架结构拓扑优化传统模型中优化问题非凸、多重特征值不存在常规梯度等困难,将考虑多种约束的桁架结构拓扑优化问题建模为统一的半定规划(semidefinite programming,SDP)模型. 首先给出体积、柔度、基频和全局稳定约束的等价半定形式;然后基于桁架结构刚度和质量矩阵的线性表达式,将考虑体积、柔度和基频的优化问题表述为线性半定规划对偶规划问题的标准形式;最后分别以全局稳定约束和应力约束为例,对非线性半定约束和非线性常规约束进行了近似处理,建立了一般非线性模型的近似半定模型并给出了序列求解算法.线性半定规划模型将传统的非线性非凸模型转化为凸模型,具有良好的数值特性;对非线性约束的处理方法使统一模型既能利用半定约束的良好特性,又能够考虑多种常规约束,有助于提高优化结果的工程实用性. 优化算例表明,半定规划模型和算法具有多种约束下桁架优化问题的求解能力,且能够处理包含多重特征值的基频约束和全局稳定约束,证明了所提模型和算法求解桁架结构拓扑优化问题的有效性.
关键词:  桁架结构  拓扑优化  优化模型  半定规划  序列近似
DOI:10.11918/j.issn.0367-6234.201901070
分类号:TU323.4;O224
文献标识码:A
基金项目:
Modeling and solving of truss topology optimization problems based on semidefinite programming
HAO Baoxin1,ZHOU Zhicheng2,QU Guangji1,LI Dongze1
(1.Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, China; 2.China Academy of Space Technology, Beijing 100094, China)
Abstract:
To overcome the non-convexity and non-differentiability of multiple eigenvalues in traditional truss topology optimization models, a unified semidefinite programming (SDP) model was established for truss topology optimization problems with various constraints. Equivalent semidefinite forms were first provided for volume, compliance, fundamental frequency, and global stability constraints. Since the stiffness matrix and the mass matrix of truss are both linear with respect to design variables, problems considering volume, compliance, and fundamental frequency constraints were reformulated as standard dual forms linear SDP. Demonstrated by the global stability constraint and the stress constraint, nonlinear semidefinite constraints and nonlinear scalar constraints were separately approximated by simpler SDP forms at the current design point, which converts the nonlinear model to a solvable approximate SDP model. An algorithm for sequentially solving the approximate problem was then introduced to deal with the nonlinear problem. When the model contains only linear semidefinite constraints, the resultant linear SDP is convex and numerically favorable. When it concerns nonlinear constraints, the sequential approximate scheme enjoys the numerical advantage of linear semidefinite forms and also maintains the ability to handle ordinary nonlinear constraints, which may contribute to a more practical design. Examples show that the proposed SDP model and algorithm could deal with various constraints in truss topology optimization, especially fundamental frequency constraints and global stability constraints with multiple eigenvalues, which verified the effectiveness of the model and the algorithm.
Key words:  truss  topology optimization  optimization model  semidefinite programming (SDP)  sequential approximation

友情链接LINKS