期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:杨波,程维政,朱超.小世界效应加速生物地理学优化的社团识别算法[J].哈尔滨工业大学学报,2020,52(3):179.DOI:10.11918/201811143
YANG Bo,CHENG Weizheng,ZHU Chao.Detecting communities via biogeography-based optimization accelerated by small-world effects[J].Journal of Harbin Institute of Technology,2020,52(3):179.DOI:10.11918/201811143
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1108次   下载 897 本文二维码信息
码上扫一扫!
分享到: 微信 更多
小世界效应加速生物地理学优化的社团识别算法
杨波,程维政,朱超
(武汉理工大学 自动化学院, 武汉 430070)
摘要:
为提高基于优化方法的网络社团结构识别算法的有效性,设计一种利用小世界效应加速生物地理学优化过程的网络社团结构识别算法. 首先基于矩阵随机编码建立网络社团识别生物地理学优化框架,在栖息地中全局进化地搜索对应于最大化模块度的网络社团划分. 然后,给出基于小世界效应的生物地理学迁移策略,可以加速进化算法的信息交换过程. 最后,运用该算法在现实网络和人工合成网络上进行实验. 结果表明:引入小世界效应能够降低网络社团结构识别算法的收敛时间;在典型现实网络与人工合成网络上运行该算法能够获得较高的模块度值与标准化互信息值;信息交换的拓扑结构能够优化进化算法效率. 应用小世界效应加速生物地理学优化的网络社团识别算法具有较好的可行性与有效性.
关键词:  网络  社团结构识别  进化算法  生物地理学优化  小世界效应
DOI:10.11918/201811143
分类号:TP393.0
文献标识码:A
基金项目:国家自然科学基金(61203032);湖北省自然科学基金(2012FFB05007);国家留学基金委基金(201406955049)
Detecting communities via biogeography-based optimization accelerated by small-world effects
YANG Bo,CHENG Weizheng,ZHU Chao
(School of Automation, Wuhan University of Technology, Wuhan 430070, China)
Abstract:
To enhance the efficiency of optimization-based algorithms for detecting community structures in networks, a novel algorithm was designed by utilizing the small-world effects to accelerate biogeography-based optimization process for community detection. First, based on matrix random coding, the problems of detecting community structures in networks were embedded into the framework of biogeography-based optimization. Community structures were searched evolutionarily and globally corresponding to the maximal modularity in habitat. Then, a migration evolutionary strategy was introduced based on the small-world effects, which can accelerate the information exchange process of the proposed evolutionary algorithm. Finally, tests on real-world and computer-generated networks were conducted using the proposed algorithm. Results show that the small-world effects reduced the convergence time of the algorithm for community detection, and the values of the modularity and the normalized mutual information were both high when applying the proposed algorithm to the real-world and the computer-generated networks. The topology structures of information exchanges could optimize the efficiency of the evolutionary algorithm. Therefore, the algorithm adopting small-world effects to accelerate biogeography-based optimization for network community detection was proved feasible and effective.
Key words:  network  community detection  evolutionary algorithm  biogeography-based optimization  small-world effects

友情链接LINKS