引用本文: | 王锋,姚欣泽,杨跃,赵玥,董文艺,王宏杰,于晓红,赵子龙.盐度对共代谢降解底泥多环芳烃的影响及微生物群落响应[J].哈尔滨工业大学学报,2024,56(2):161.DOI:10.11918/202301051 |
| WANG Feng,YAO Xinze,YANG Yue,ZHAO Yue,DONG Wenyi,WANG Hongjie,YU Xiaohong,ZHAO Zilong.Effect of salinity on co-metabolism degradation of polycyclic aromatic hydrocarbons in sediment and response of microbial community[J].Journal of Harbin Institute of Technology,2024,56(2):161.DOI:10.11918/202301051 |
|
|
|
本文已被:浏览 5857次 下载 7204次 |
码上扫一扫! |
|
盐度对共代谢降解底泥多环芳烃的影响及微生物群落响应 |
王锋1,2,姚欣泽1,杨跃3,赵玥1,董文艺1,4,5,6,王宏杰1,4,5,6,于晓红2,赵子龙1,5,6
|
(1.哈尔滨工业大学(深圳) 土木与环境工程学院,广东 深圳 518055;2.哈尔滨工业大学(深圳) 经济管理学院,广东 深圳 518055;3.深圳能源环保股份有限公司,广东 深圳 518048;4.城市水资源与水环境国家重点实验室(哈尔滨工业大学), 哈尔滨 150090;5.深圳市水资源利用与环境污染控制重点实验室(哈尔滨工业大学(深圳)),广东 深圳 518055; 6.城市高浓度废水处理与资源化实验室(校企联合),广东 深圳 518055)
|
|
摘要: |
微生物共代谢可有效降解河道污染底泥中的多环芳烃(polycyclic aromatic hydrocarbons,PAHs),沿海城市内河与外海交界处的感潮河段由于受潮汐影响,上覆水盐度波动大,但盐度波动对共代谢降解底泥PAHs的影响及微生物群落的响应仍不清楚。为此,采用乙酸钠耦合邻苯二甲酸为共代谢外加碳源,考察上覆水0~50‰盐度波动范围对底泥PAHs降解的影响,监测底泥理化性质和硫化物质量浓度的变化,解析盐度波动条件下底泥微生物群落的变化。结果表明:低盐环境(0~20‰)更利于共代谢反应进行,PAHs降解率是高盐环境(>20‰~50‰)的1.5~3.3倍;高盐环境产生的高渗透压会影响微生物活性,导致底泥pH和氧化还原电位(oxidation-reduction potential,ORP)下降减缓,SO2-4的还原速率下降。高通量测序表明:盐度波动可显著改变底泥的微生物群落结构,低盐环境下变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)占主导地位,其中,Marinobacterium菌属和Marinobacter菌属为参与共代谢降解PAHs的优势属;高盐环境的胁迫效应抑制了多数微生物的活性,但脱硫杆菌门(Desulfobacter)和绿弯菌门(Chloroflexi)丰度持续增加, SBR1031和Sulfurovum成为优势菌属。 |
关键词: 底泥 多环芳烃 盐度 共代谢 微生物 |
DOI:10.11918/202301051 |
分类号:X522 |
文献标识码:A |
基金项目:深圳市科技创新委员会可持续发展专项(KCXFZ202002011006362) |
|
Effect of salinity on co-metabolism degradation of polycyclic aromatic hydrocarbons in sediment and response of microbial community |
WANG Feng1,2,YAO Xinze1,YANG Yue3,ZHAO Yue1,DONG Wenyi1,4,5,6,WANG Hongjie1,4,5,6,YU Xiaohong2,ZHAO Zilong1,5,6
|
(1.School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055,Guangdong, China; 2.School of Economics and Management, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China; 3.Shenzhen Energy Environmental Protection Co., Shenzhen 518048, Guangdong, China; 4. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China; 5. Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control (Harbin Institute of Technology, Shenzhen), Shenzhen 518055, Guangdong, China; 6.Joint Laboratory of Urban High Strength Wastewater Treatment and Resources Utilization, Shenzhen 518055, Guangdong, China)
|
Abstract: |
Microbial co-metabolism can effectively degrade the polycyclic aromatic hydrocarbons (PAHs) in polluted sediment of river. The salinity of overlying water in tide river section at the junction of inland and outland water in coastal cities fluctuates greatly due to tidal influence, but the effect of salinity fluctuation on the co-metabolism degradation of PAHs in the sediment and the response of microbial community are still unclear. In this study, sodium acetate and phthalic acid were used as co-metabolic carbon sources to investigate the effect of fluctuation with a range of 0-50‰ salinity of overlying water on the degradation of PAHs in the sediment, monitor the changes of the physicochemical properties and sulfide content of the sediment, and analyze the changes of the microbial community in the sediment under the condition of salinity fluctuation. The results showed that a low-salt environment (0-20‰) was more conducive to co-metabolism and degradation of PAHs, and the degradation rate of PAHs was 1.5-3.3 times higher than that of a high-salt environment (>20‰-50‰). Moreover, the high osmotic pressure produced by the high-salt environment would affect the microbial activity and inhibit the co-metabolism reaction, resulting in a slow decline in pH and oxidation-reduction potential (ORP) of the sediment and a decrease in the reduction rate of SO2-4. High-throughput sequencing showed that salinity fluctuation could significantly change the microbial community structure of the sediment. Proteobacteria, Firmicutes, and Bacteroides were dominant in the low-salt environment while Marinobacterium and Marinobacter were the dominant genera involved in the co-metabolism and degradation of PAHs. In addition, the stress effect of the high-salt environment inhibited the activity of most microorganisms, while the abundance of Desulfobacter and Chloroflexi continued to increase, and SBR1031 and Sulfurovum became the dominant bacteria. |
Key words: sediment PAHs salinity co-metabolism microorganism |
|
|
|
|