期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:赵丝喆,王宽全,袁永峰.基于GPU的势能场骨架提取并行算法[J].哈尔滨工业大学学报,2016,48(5):18.DOI:10.11918/j.issn.0367-6234.2016.05.002
ZHAO Sizhe,WANG Kuanquan,YUAN Yongfeng.Parallel method of skeleton extraction using potential field on GPU[J].Journal of Harbin Institute of Technology,2016,48(5):18.DOI:10.11918/j.issn.0367-6234.2016.05.002
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2319次   下载 1230 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于GPU的势能场骨架提取并行算法
赵丝喆, 王宽全, 袁永峰
(哈尔滨工业大学 计算机科学与技术学院, 150001 哈尔滨)
摘要:
为解决势能场骨架提取方法计算效率低、提取过程耗时大的问题,同时为降低该方法的时间复杂度,提出了基于GPU的势能场骨架提取并行算法,并充分利用CUDA架构特有的常量存储器和共享存储器对普通并行算法进行改进.讨论了如何根据程序和显卡设备的固有属性来分配线程以达到最高的GPU占用率,从而得到最优的加速效果.对多组3D模型进行测试的结果表明,随着数据规模的增大,加速效果逐渐提升,处理256×256×487的体数据时,可获得18倍的加速比.
关键词:  图形处理器  并行计算  势能场  骨架提取  通用并行计算架构
DOI:10.11918/j.issn.0367-6234.2016.05.002
分类号:P315.69
文献标识码:A
基金项目:国家自然科学基金面上项目(61173086).
Parallel method of skeleton extraction using potential field on GPU
ZHAO Sizhe, WANG Kuanquan,YUAN Yongfeng
(School of Computer Science and Technology, Harbin Institute of Technology, 150001 Harbin,China)
Abstract:
For curve skeleton extraction algorithm, in order to improve the efficiency of potential field computation and save the time of extraction process, we presented a parallel potential field skeleton extraction method to reduce the time complexity, which was suitable for implementation on GPU, and then improved it by using constant memory and shared memory which was unique in CUDA. In order to achieve the highest GPU occupancy and the best speedups, we discussed how to assign threads according to the property of program and graphics device. The implementation was tested on several complex 3D models in CUDA framework. The results showed that our method had excellent performance especially on large data scale. When processing the volume data with the scale of 256×256×487, this improved method achieved speedups of 18x.
Key words:  GPU  parallel computing  potential field  skeleton extraction  CUDA

友情链接LINKS