期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:国强,李文韬.基于正则化约束总体最小二乘的TDOA/FDOA无源定位方法[J].哈尔滨工业大学学报,2022,54(5):81.DOI:10.11918/202012030
GUO Qiang,LI Wentao.Passive TDOA/FDOA location based on regularized constrained total least squares[J].Journal of Harbin Institute of Technology,2022,54(5):81.DOI:10.11918/202012030
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1433次   下载 1026 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于正则化约束总体最小二乘的TDOA/FDOA无源定位方法
国强,李文韬
(哈尔滨工程大学 信息与通信工程学院,哈尔滨 150001)
摘要:
目前在基于到达时间差(TDOA)和到达频率差(FDOA)的多站无源定位模型中,噪声的干扰、接收站和目标位置的不合理分布以及接收站的个数均会对定位模型中的系数矩阵造成影响,因此在实际的求解过程中系数矩阵可能会出现病态的问题,这在很大程度上会对定位结果产生影响。为了进一步在系数矩阵出现病态的情况下确保定位精度,提出了一种基于正则化约束总体最小二乘(RCTLS)的闭式解析法。该方法分为两步,第一步针对TDOA/FDOA定位问题建立基于RCTLS思想的定位模型,同时基于最小化均方误差的准则求解正则化参数,之后通过数学推导给出该模型的闭式解析解;第二步是利用约束条件建立关于第一步估计误差的方程并进行求解,最后利用求得的解对第一步的估计结果进行修正。仿真结果表明:本文方法通过牺牲了无偏性取得了低于两步加权最小二乘法(TSWLS)和约束总体最小二乘法(CTLS)的均方根误差(RMSE),而且在系数矩阵出现病态的情况下,其定位性能较TSWLS方法和CTLS方法也更为稳定。
关键词:  无源定位  到达时间差  到达频率差  正则化约束最小二乘  均方根误差
DOI:10.11918/202012030
分类号:V247;TN97
文献标识码:A
基金项目:
Passive TDOA/FDOA location based on regularized constrained total least squares
GUO Qiang,LI Wentao
(College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China)
Abstract:
The interference of noise, the unreasonable distribution of receivers and target, and the number of receivers all affect the coefficient matrix in the multi-station passive positioning model based on time difference of arrival (TDOA) and frequency difference of arrival (FDOA). Therefore, the coefficient matrix may be ill-conditioned in the actual solution process, which will affect the positioning accuracy to a large extent. A closed-form analytical method based on regularized constrained total least squares (RCTLS) was proposed to further improve the positioning accuracy when the coefficient matrix was ill-conditioned. The method was divided into two steps. In the first step, the positioning model based on RCTLS method was established to solve the positioning problem using TDOA and FDOA, and the regularization parameter was solved based on the criterion of minimizing mean square error. Then, the closed-form analytical solution of the model could be obtained by mathematical operation. The second step was to establish the equation of the estimation error obtained from the first step utilizing the constraint conditions, which was then solved. Finally, the obtained solution was used to modify the estimation results of the first step. Simulation results show that the root mean square error (RMSE) of the proposed method was lower than those of two-stage weighted least squares (TSWLS) and constrained total least squares (CTLS) methods through sacrificing unbiasedness, and the positioning performance was more stable than those of TSWLS and CTLS methods in the case of ill-conditioned coefficient matrix.
Key words:  passive location  time difference of arrival (TDOA)  frequency difference of arrival (FDOA)  regularized constrained least squares  root mean square error (RMSE)

友情链接LINKS